High Performance Amorphous InGaZnO Based Dual-Gate Ion-Sensitive Field-Effect Transistors

2012 ◽  
Author(s):  
J. G. Gu ◽  
H. J. Jang ◽  
S. W. Lee ◽  
W. J. Cho
2021 ◽  
Vol 13 (1) ◽  
pp. 153-163
Author(s):  
S. Behera ◽  
S. R. Pattanaik ◽  
G. Dash

The success of the graphene field-effect transistor (GFET) is primarily based on solving the problems associated with the growth and transfer of high-quality graphene, the deposition of dielectrics and contact resistance. The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. This is because process variability is inherent in semiconductor device manufacturing. Two units, even manufactured in the same batch, never show identical characteristics. Therefore, it is imperative that the effect of variability be studied with a view to obtain equivalent performance from similar devices. In this study, we undertake the variability of source and drain contact resistances and their effects on the performance of GFET. For this we have used a simulation method developed by us. The results show that the DC characteristics of GFET are highly dependent on the channel resistance. Also the ambipolar characteristics are strongly affected by the variation of source and drain resistances. We have captured their impact on the output as well as transfer characteristics of a dual gate GFET.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2012 ◽  
Vol 24 (34) ◽  
pp. 4589-4589 ◽  
Author(s):  
Huajie Chen ◽  
Yunlong Guo ◽  
Gui Yu ◽  
Yan Zhao ◽  
Ji Zhang ◽  
...  

2009 ◽  
Vol 21 (2) ◽  
pp. NA-NA ◽  
Author(s):  
Hoi Nok Tsao ◽  
Don Cho ◽  
Jens Wenzel Andreasen ◽  
Ali Rouhanipour ◽  
Dag W. Breiby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document