Determination of Temperature-Dependent Stress in SiC MOSFETs by Raman Spectroscopy

Author(s):  
R. Sugie ◽  
T. Uchida
2021 ◽  
Vol 155 (12) ◽  
pp. 124302
Author(s):  
Xianwen Cao ◽  
Lu Xing ◽  
Ying Wang ◽  
Shenghan Wang ◽  
Chenglin Sun ◽  
...  

Circulation ◽  
1997 ◽  
Vol 96 (1) ◽  
pp. 99-105 ◽  
Author(s):  
James F. Brennan ◽  
Tjeerd J. Römer ◽  
Robert S. Lees ◽  
Anna M. Tercyak ◽  
John R. Kramer ◽  
...  

2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Mingming Yang ◽  
Longlong Wang ◽  
Xiaofen Qiao ◽  
Yi Liu ◽  
Yufan Liu ◽  
...  

Abstract The defects into the hexagonal network of a sp2-hybridized carbon atom have been demonstrated to have a significant influence on intrinsic properties of graphene systems. In this paper, we presented a study of temperature-dependent Raman spectra of G peak and D’ band at low temperatures from 78 to 318 K in defective monolayer to few-layer graphene induced by ion C+ bombardment under the determination of vacancy uniformity. Defects lead to the increase of the negative temperature coefficient of G peak, with a value almost identical to that of D’ band. However, the variation of frequency and linewidth of G peak with layer number is contrary to D’ band. It derives from the related electron-phonon interaction in G and D’ phonon in the disorder-induced Raman scattering process. Our results are helpful to understand the mechanism of temperature-dependent phonons in graphene-based materials and provide valuable information on thermal properties of defects for the application of graphene-based devices.


2021 ◽  
Vol 291 ◽  
pp. 129519
Author(s):  
Yuwaraj K. Kshetri ◽  
Bina Chaudhary ◽  
Takashi Kamiyama ◽  
Tae-Ho Kim ◽  
Federico Rosei ◽  
...  

2020 ◽  
Vol 235 (6-7) ◽  
pp. 213-223
Author(s):  
Hilke Petersen ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractThe temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered $P\overline{4}3n$ (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in $P\overline{4}3n$. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from $P\overline{4}3n$ to $Pm\overline{3}n$, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 523 ◽  
Author(s):  
Simonas Ramanavičius ◽  
Milda Petrulevičienė ◽  
Jurga Juodkazytė ◽  
Asta Grigucevičienė ◽  
Arūnas Ramanavičius

In this research, the investigation of sensing properties of non-stoichiometric WO3 (WO3−x) film towards some volatile organic compounds (VOC) (namely: Methanol, ethanol, isopropanol, acetone) and ammonia gas are reported. Sensors were tested at several temperatures within the interval ranging from a relatively low temperature of 60 up to 270 °C. Significant variation of selectivity, which depended on the operational temperature of sensor, was observed. Here, the reported WO3/WO3–x-based sensing material opens an avenue for the design of sensors with temperature-dependent sensitivity, which can be applied in the design of new gas- and/or VOC-sensing systems that are dedicated for the determination of particular gas- and/or VOC-based analyte concentration in the mixture of different gases and/or VOCs, using multivariate analysis of variance (MANOVA).


Sign in / Sign up

Export Citation Format

Share Document