scholarly journals Theoretical and Experimental Study of Split Semi Horse Shoe Structure

2018 ◽  
Vol 7 (5) ◽  
pp. 131-136
Author(s):  
G. Singh ◽  
S. S. Pattnaik

In this paper a new planar metamaterial structure that looks like semi-horse shoe in shape (SSHSS) is designed and simulated. Theoretical analysis of proposed structure done using equivalent circuit theory. Medium effective parameters are extracted using modified NRW approach which proved the metamaterial property of the new unit cell. Radiation pattern, directivity and gain of the new structure were illustrated which gives the possibility of using SSHSS as the antenna. Proposed structure shows multiband characteristics. This antenna shows high directivity (7.92 dBi, 7.86 dBi, 10.11 dBi) and moderate gain (2.55 dBi, 3.90 dBi, 5.07 dBi) at 5.83 GHz, 8.41 GHz, 10.68 GHz respectively. RT duroid is used for fabrication of prototype of the proposed structure. This new structure can be used as metamaterial inspired antenna as well as normal patch antenna. Experimental results shows good agreement with simulated and theoretical results.The proposed structure has been simulated using IE3D electromagnetic simulator.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sorana Niyamanon ◽  
Rewat Senathong ◽  
Chuwong Phongcharoenpanich

This research proposes a dual-frequency circularly polarized truncated square aperture patch antenna with slant stripline and L-shaped slot for WLAN applications. In the antenna design, the parameters were optimized and the WLAN-enabled dual-frequency (2.4 and 5.8 GHz) antenna was realized. Simulations were subsequently carried out for the impedance bandwidth (S11) < −10 dB, axial ratio (AR) ≤ 3 dB, optimal gain, and bidirectional radiation pattern. To validate, an antenna prototype was fabricated and the experiments were undertaken. The simulated and experimental results are in good agreement. In essence, the proposed WLAN-enabled dual-frequency circularly polarized antenna is most suited for applications in the vertically and horizontally elongated areas, including in the tunnel, train carriage, and buildings.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2011 ◽  
Vol 243-249 ◽  
pp. 1866-1870 ◽  
Author(s):  
Hong Yuan Tang ◽  
Shao Ping Meng

Through experiment study on full scale segmental model of Huaian bridge pylon, the stress distribution in the segmental model under the U shaped tendons and the horizontal load was measured. At the same time, the critical cracking load and the coefficient cracking safety class of the anchorage zone were obtained. At last, the theoretical analysis was compared with the experimental results, the theory agreed with the experiment well.


1961 ◽  
Vol 83 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Morris Perlmutter

An analytical and experimental study of flow in headers with a resistance parallel to the turbulent and incompressible main stream has been made. The purpose was to shape the inlet and exit headers, which had a large length-to-height ratio, so that the fluid would pass through the resistance uniformly. Analytical wall shapes and estimated total pressure drop through the headers were compared with experimental results. Good agreement between analysis and experiment was found for the cases compared.


1964 ◽  
Vol 19 (6) ◽  
pp. 747-755
Author(s):  
W. J. De Wet ◽  
J. Los

The design of mass diffusion columns operated with partition membranes, for the separation of light gaseous isotopes, is discussed. A theoretical analysis of experimental results obtained indicates that a good agreement between experimental results and theory is only obtained at low column pressures and moderate countercurrent flow rates. At fairly low countercurrent flow rates mixing effects due to viscous dragging and gas solubility by the condensate appear to be considerable whereas excessively high countercurrent flow rates, on the other hand, also seem undesirable. Some suggestions are proposed to obviate impairing effects at least to some extent.


1998 ◽  
Vol 21 (4) ◽  
pp. 279-292 ◽  
Author(s):  
A. Haddi ◽  
A. Maouad ◽  
O. Elmazria ◽  
A. Hoffmann ◽  
J. P. Charles

A simplified IGBT (Insulated Gate Bipolar Transistor) SPICE macromodel, based on its equivalent circuit, is proposed. This macromodel is provided to simulate various mechanisms governing the behavior of the IGBT, and it takes into account specific phenomena limiting its SOA (Safe Operating Area), such as forward and reverse biased SOA, as well as latch-up. The validity of this model is confirmed by comparison between simulation and experimental results as well as the data sheets. This comparison is tested for two IGBT devices showing two different powers and switching speeds, and a good agreement is recorded for both IGBT devices.


1971 ◽  
Vol 93 (4) ◽  
pp. 691-698 ◽  
Author(s):  
Thang Bui Quoc ◽  
J. Dubuc ◽  
A. Bazergui ◽  
A. Biron

A theoretical analysis of uniaxial cumulative fatigue damage is presented together with a large number of experimental results on unnotched specimens of A-201 and A-517 steels. The theory developed permits the prediction of fatigue curves for stress-controlled conditions with zero or positive mean stress as well as the evaluation of the damage accumulated during a fatigue test and hence the prediction of the remaining life of a specimen. Theory is in good agreement with the experimental results as well as with published data on other materials. The development may be extended to other types of tests such as strain-controlled or random loading conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. A. Ansari ◽  
Sapna Verma ◽  
Ashish Singh

An investigation into the design and fabrication of multiband disk patch antenna with symmetrically quad C-slots is presented in this paper. The proposed antenna shows multiband resonance frequencies which highly depend on substrate thickness, dielectric constant, and radius of the disk patch. By incorporating two pairs of C-slots in optimum geometry on the radiating patch, the proposed antenna operates between 2 and 12 GHz at different frequency bands centered at 2.27, 7.505, 9.34, 10.33, and 11.61 GHz. The other antenna parameters are studied like gain, antenna efficiency, and radiation pattern. The proposed antenna may find applications in S-, C-, and X-band. The results are carried out with the aid of HFSS and MOM-based IE3D simulator. The measured and simulated results are in good agreement with each other.


1947 ◽  
Vol 25a (6) ◽  
pp. 315-321 ◽  
Author(s):  
G. A. Woonton ◽  
J. G. Tillotson

The relation between the power received by a short, rectangular, electromagnetic horn, and its angular position in a plane electromagnetic field can be calculated, for rotation in the plane of the electric vector, from ordinary optical theory by assuming that the aperture produces at the throat a Fresnel diffraction pattern appropriate to the angular position of the aperture. Experimental results for four horns of slant lengths 25, 50, 100, and 176 cm., but all of the same aperture, 10λ to a side at a wave length of 3.2 cm., are in good agreement with the theoretical predictions at angles up to [Formula: see text] radian from the axis, for slant lengths down to 50 cm. but not down to 25 cm.


1960 ◽  
Vol 82 (4) ◽  
pp. 393-398 ◽  
Author(s):  
B. R. Singh

The motion of a body sliding under boundary friction, at a velocity slower than a particular critical velocity of the system, proceeds in a discontinuous or stick-slip form. This paper presents a theoretical analysis and an experimental study of the critical velocity of stick-slip sliding. The influence of various parameters such as friction, damping, stiffness, and sliding mass of the system on the critical velocity was studied on a mechanical model arranged on a milling machine. The arrangement was also simulated on an electric analog computer. Good correlation was observed between the theoretical values and the experimental results on the mechanical model and on the analog computer.


Sign in / Sign up

Export Citation Format

Share Document