scholarly journals Effects of food type and abundance on begging and sharing in Asian small-clawed otters (Aonyx cinereus)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10369
Author(s):  
Madison Bowden-Parry ◽  
Erik Postma ◽  
Neeltje J. Boogert

Begging for food, a conspicuous solicitation display, is common in a variety of taxa, and it has received extensive research attention in a parent-offspring context. Both theoretical models and empirical evidence suggest that offspring begging can be an honest signal of hunger or a mediator of competition between siblings. At a behavioural mechanistic level, begging for food can be a form of harassment aimed at persuading those in possession of food to share. Food sharing, defined as the transfer of a defendable food item from one individual to another, can vary considerably between species, age-classes and food type and abundance. We investigated the determinants of begging and food-sharing behaviours in Asian small-clawed otters (Aonyx cinereus), a group-living species that commonly exhibits begging in captivity. We presented two captive otter populations with three food types that varied in exploitation complexity, in three different abundances. We predicted that begging rates would be highest when food was in lowest abundance and hardest to exploit, and that increased begging would lead to increased food sharing. We found that, over time, increased begging rates were indeed correlated with increased food transfers, but neither food type complexity nor abundance affected begging or sharing rates. However, age category was significantly associated with begging and food sharing rates: juvenile otters begged more and shared less than adult otters. The results from this first experimental study on begging and food sharing within the Mustelid family begin to reveal some of the drivers of these behaviours.

2021 ◽  
Author(s):  
Simon P. Ripperger ◽  
Gerald G. Carter

AbstractStable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 22 months in captivity. We assessed evidence for six hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that female vampire bats departed their roost individually, but often re-united far outside the roost. Nonrandomly repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when controlling for kinship. Foraging bats demonstrated both affiliative and competitive interactions and a previously undescribed call type. We suggest that social foraging could have implications for social evolution if ‘local’ cooperation within the roost and ‘global’ competition outside the roost enhances fitness interdependence between frequent roostmates.


PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001366
Author(s):  
Simon P. Ripperger ◽  
Gerald G. Carter

Stable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 21 months in captivity. We assessed evidence for 6 hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that closely bonded female vampire bats departed their roost separately, but often reunited far outside the roost. Repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when accounting for kinship. Foraging bats demonstrated both affiliative and competitive interactions with different social calls linked to each interaction type. We suggest that social foraging could have implications for social evolution if “local” within-roost cooperation and “global” outside-roost competition enhances fitness interdependence between frequent roostmates.


2020 ◽  
Author(s):  
Bryce Morsky ◽  
Marco Smolla ◽  
Erol Akçay

AbstractLife history strategies are a crucial aspect of life, which are complicated in group-living species, where payoffs additionally depend on others’ behaviours. Previous theoretical models of public good games have generally focused on the amounts individuals contribute to the public good. Yet a much less studied strategic aspect of public good games, the timing of contributions, can also have dramatic consequences for individual and collective performance. Here, we develop game theoretical models to explore how the timing of contributions evolves. We show how contributing rapidly is not necessarily optimal, since delayers can act as “cheats,” avoiding contributing while reaping the benefits of the public good. However, delaying too long can put the delayers at a disadvantage as they can miss out on the benefits. These effects lead to bistability in a single group, and spatial diversity among multiple interacting groups.


2020 ◽  
Vol 287 (1927) ◽  
pp. 20200735
Author(s):  
Bryce Morsky ◽  
Marco Smolla ◽  
Erol Akçay

Life-history strategies are a crucial aspect of life, which are complicated in group-living species, where pay-offs additionally depend on others’ behaviours. Previous theoretical models of public goods games have generally focused on the amounts individuals contribute to the public good. Yet a much less-studied strategic aspect of public goods games, the timing of contributions, can also have dramatic consequences for individual and collective performance. Here, we develop two stage game theoretical models to explore how the timing of contributions evolves. In the first stage, individuals contribute to a threshold public good based on a performance schedule. The second stage begins once the threshold is met, and the individuals then compete as a function of their performance. We show how contributing rapidly is not necessarily optimal, because delayers can act as ‘cheats,’ avoiding contributing while reaping the benefits of the public good. However, delaying too long can put the delayers at a disadvantage as they may be ill-equipped to compete. These effects lead to bistability in a single group, and spatial diversity among multiple interacting groups.


Author(s):  
Martin Surbeck ◽  
Gottfried Hohmann

The nature of the relationships between males is a characteristic trait of many multi-male group living species with implications for the individuals. In our study population of bonobos, certain male dyads exhibit clear preferences for ranging in the same party and sitting in proximity. These preferences are not reflected in the frequency of aggression towards each other and only to some extent in their affiliative and socio-sexual behaviours. While bonobo males at LuiKotale clearly do not benefit from close relationships in the way chimpanzee males do (cooperative hunting, territorial patrol, mate competition), some relationships might result from close associations between their mothers. In some particular situations, these male relationships can be very important as in the case of an orphan adopted by his older maternal brother. La nature des relations entre mâles est un trait caractéristique de plusieurs groupes qui ont plusieurs mâles, avec des implications au niveau d’individus. Dans notre étude des populations de bonobos, certains dyades mâles montrent une préférence à aller dans le même groupe et s’asseoir proche l’un de l’autre. Cette préférence n’est pas reflétée dans la fréquence d’agression entre eux et est seulement lié, à degrés, à leur comportements socio-sexuels et d’appartenance. Tandis que les mâles bonobos à LuiKotale ne profitent pas de leur fortes relations comme les chimpanzés mâles (chasse coopérative, patrouille territoriale, compétition pour compagnon), ils peuvent aider leur partenaires à supporter le stress de la vie en groupe et peuvent en conséquence contribuer au bien-être des individus. Quelques proches associations entre les mâles peuvent provenir d’associations entre leurs mères. Dans quelques situations particulières, ces relations mâles prouvent leur importance comme dans le cas d’un orphelin adopté par son grand frère maternel.


Author(s):  
Jeffrey P. Copeland ◽  
Arild Landa ◽  
Kimberly Heinemeyer ◽  
Keith B. Aubry ◽  
Jiska van Dijk ◽  
...  

Social behaviour in solitary carnivores has long been an active area of investigation but for many species remains largely founded in conjecture compared to our understanding of sociality in group-living species. The social organization of the wolverine has, until now, received little attention beyond its portrayal as a typical mustelid social system. In this chapter the authors compile observations of social interactions from multiple wolverine field studies, which are integrated into an ecological framework. An ethological model for the wolverine is proposed that reveals an intricate social organization, which is driven by variable resource availability within extremely large territories and supports social behaviour that underpins offspring development.


2017 ◽  
Vol 4 (3) ◽  
pp. 160891 ◽  
Author(s):  
Shagun Jindal ◽  
Aneesh P. H. Bose ◽  
Constance M. O'Connor ◽  
Sigal Balshine

Infanticide and offspring cannibalism are taxonomically widespread phenomena. In some group-living species, a new dominant individual taking over a group can benefit from infanticide if doing so induces potential mates to become reproductively available sooner. Despite widespread observations of infanticide (i.e. egg cannibalism) among fishes, no study has investigated whether egg cannibalism occurs in fishes as a result of group takeovers, or how this type of cannibalism might be adaptive. Using the cooperatively breeding cichlid, Neolamprologus pulcher , we tested whether new unrelated males entering the dominant position in a social group were more likely to cannibalize eggs, and whether such cannibalism would shorten the interval until the female's next spawning. Females spawned again sooner if their broods were removed than if they were cared for. Egg cannibalism occurred frequently after a group takeover event, and was rarer if the original male remained with the group. While dominant breeder females were initially highly aggressive towards newcomer males that took over the group, the degree of resistance depended on relative body size differences between the new pair and, ultimately, female aggression did not prevent egg cannibalism. Egg cannibalism, however, did not shorten the duration until subsequent spawning, or increase fecundity during subsequent breeding in our laboratory setting. Our results show that infanticide as mediated through group takeovers is a taxonomically widespread behaviour.


1995 ◽  
Vol 18 (1) ◽  
pp. 71
Author(s):  
J.L. Gardner ◽  
M. Serena

The Water Rat Hydromys chrysogaster is Australia's largest amphibious rodent, occupying freshwater rivers, lakes, and coastal and estuarine habitats throughout the continent (Watts and Aslin 1981). Little is known of the species' social organisation or use of space in the wild although Harris (1978) suggested that adults might be intrasexually aggressive. The home ranges of all sex and age classes overlap to some extent but home ranges of adults of the same sex appear to overlap less (Harris 1978). Adult males occupy the largest home ranges which overlap those of one or more females. In captivity individuals kept in groups form hierarchies in which only the dominant females usually breed successfully (Olsen 1982). Fighting occurs primarily among males, with the highest incidence of injuries observed at the beginning of the main September-March breeding season (Olsen 1980, 1982). The results of trapping studies indicate that population density may vary considerably, with the greatest numbers of animals typically occupying man-modified habitats such as irrigation channels or fish farms (McNally 1960, Watts and Aslin 1981, Smales 1984). Aggressive behaviour appears to be related to pelage colour (phenotype) and population density; the higher the density the greater the number of injured individuals (Olsen 1980).


2019 ◽  
Vol 31 (2) ◽  
pp. 432-439
Author(s):  
Jennifer K Hellmann ◽  
Kelly A Stiver ◽  
Susan Marsh-Rollo ◽  
Suzanne H Alonzo

Abstract Male–male competition is a well-known driver of reproductive success and sexually selected traits in many species. However, in some species, males work together to court females or defend territories against male competitors. Dominant (nesting) males sire most offspring, but subordinate (satellite) males are better able to obtain fertilizations relative to unpartnered males. Because satellites only gain reproductive success by sneaking, there has been much interest in identifying the mechanisms enforcing satellite cooperation (defense) and reducing satellite sneaking. One such potential mechanism is outside competition: unpartnered satellites can destabilize established male partnerships and may force partnered satellites to restrain from cheating to prevent the dominant male from replacing them with an unpartnered satellite. Here, we manipulated perceived competition in the Mediterranean fish Symphodus ocellatus by presenting an “intruding” satellite male to established nesting and satellite male pairs. Focal satellite aggression to the intruder was higher when focal satellites were less cooperative, suggesting that satellites increase aggression to outside competitors when their social position is less stable. In contrast, nesting male aggression to the intruder satellite increased as spawning activity increased, suggesting that nesting males increase their defense toward outside competitors when their current relationship is productive. We found no evidence of altered spawning activity or nesting/satellite male interactions before and after the presentation. These results collectively suggest that response to outside competition is directly linked to behavioral dynamics between unrelated male partners and may be linked to conflict and cooperation in ways that are similar to group-living species.


Sign in / Sign up

Export Citation Format

Share Document