scholarly journals The disturbance leg-lift response (DLR): an undescribed behavior in bumble bees

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10997
Author(s):  
Christopher A. Varnon ◽  
Noelle Vallely ◽  
Charlie Beheler ◽  
Claudia Coffin

Background Bumble bees, primarily Bombus impatiens and B. terrestris, are becoming increasingly popular organisms in behavioral ecology and comparative psychology research. Despite growing use in foraging and appetitive conditioning experiments, little attention has been given to innate antipredator responses and their ability to be altered by experience. In this paper, we discuss a primarily undescribed behavior, the disturbance leg-lift response (DLR). When exposed to a presumably threatening stimulus, bumble bees often react by lifting one or multiple legs. We investigated DLR across two experiments. Methods In our first experiment, we investigated the function of DLR as a prerequisite to later conditioning research. We recorded the occurrence and sequence of DLR, biting and stinging in response to an approaching object that was either presented inside a small, clear apparatus containing a bee, or presented directly outside of the subject’s apparatus. In our second experiment, we investigated if DLR could be altered by learning and experience in a similar manner to many other well-known bee behaviors. We specifically investigated habituation learning by repeatedly presenting a mild visual stimulus to samples of captive and wild bees. Results The results of our first experiment show that DLR and other defensive behaviors occur as a looming object approaches, and that the response is greater when proximity to the object is lower. More importantly, we found that DLR usually occurs first, rarely precedes biting, and often precedes stinging. This suggests that DLR may function as a warning signal that a sting will occur. In our second experiment, we found that DLR can be altered as a function of habituation learning in both captive and wild bees, though the captive sample initially responded more. This suggests that DLR may be a suitable response for many other conditioning experiments.

2016 ◽  
Vol 60 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Anna Wróblewska ◽  
Ernest Stawiarz ◽  
Marzena Masierowska

Abstract Offering more floral resources for urban bees can be achieved by growing ornamental bee plants. The aim of the present study was to evaluate selected Asteraceae (Calendula officinalis ‘Persimmon Beauty’ and ‘Santana’, Centaurea macrocephala, Cosmos sulphureus, Dahlia pinnata, Tagetes patula, Tithonia rotundifolia, and Zinnia elegans) as pollen sources for pollinators. Under urban conditions in Lublin, SE Poland, the investigated plants flowered from late June to the end of October. The mass of pollen produced in florets and capitula was found to be species-related. The highest pollen amounts per 10 florets (10.1 mg) as well as per capitulum (249.7 mg) were found for C. macrocephala. The mass of pollen yielded by a single plant depended on both the pollen mass delivered per disk florets and the proportion of disk florets in capitulum, and the flowering abundance of the plants. A single plant of D. pinnata and a single plant of T. rotundifolia each produced the largest pollen mass. Mean pollen yield per 1m2 of a plot ranged from 6.2 g (Z. elegans) to 60.7 g (D. pinnata). Pollen grains are tricolporate, with echinate exine, medium or small in size. They can be categorised as oblatespherical, spherical, and prolatespherical. The principal visitors to C. macrocephala, C. sulphureus, and C. officinalis were honey bees, whereas bumble bees dominated on T. rotundifolia and D. pinnata. A magnet plant for butterflies was Z. elegans. Among the investigated species, D. pinnata, C. macrocephala, and T. rotundifolia were found to be the most valuable sources of pollen flow for managed and wild bees.


2008 ◽  
Vol 140 (3) ◽  
pp. 348-363 ◽  
Author(s):  
Claudia M. Ratti ◽  
Heather A. Higo ◽  
Terry L. Griswold ◽  
Mark L. Winston

AbstractWe studied the abundance, diversity, and dispersion patterns of managed and wild bee (Hymenoptera: Apoidea) populations in commercial highbush blueberry and cranberry (Ericaceae: Vaccinium corymbosum L., Vaccinium macrocarpon Ait.) fields in the Fraser Valley of British Columbia, and assessed their potential as pollinators of these crops by determining which groups of bees had the greatest impact on percent yield and mass of berries. Bumble bees were evenly distributed within both crops. Other wild bee species were well distributed in blueberry fields but generally remained at edges of cranberry fields. Percent berry yield was not related to bee abundance for any group of bees, nor was species diversity correlated with berry mass. Blueberry mass and cranberry mass were related to abundance of bumble bees but not to that of honey bees or other wild bees. Bumble bees are recommended as potential alternative pollinators of these crops.


2020 ◽  
Vol 49 (6) ◽  
pp. 1393-1401
Author(s):  
Mario S Pinilla-Gallego ◽  
Emma E Williams ◽  
Abby Davis ◽  
Jacquelyn L Fitzgerald ◽  
Scott H McArt ◽  
...  

Abstract Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.


Author(s):  
Mélanie Normandeau Bonneau ◽  
Olivier Samson-Robert ◽  
Valérie Fournier ◽  
Gérald Chouinard

Abstract Exclusion netting systems are effective in various contexts and are increasingly used to control crop pests. However, factors affecting pollination management under nets are poorly known. The pollination effectiveness of commercial bumble bee hives of Bombus impatiens Cresson (Hymenoptera: Apidae) was studied for apple production under exclusion netting systems in a research orchard located in Quebec, Canada during 2016–2017. Sixteen single-row plots of apple trees (plot length: 18.5 m, cultivar GingerGold) were subjected to one of the following four treatments during bloom: (1) introduction of a bumble bee hive placed at the end of the row, under nets; (2) introduction of a bumble bee hive placed in the middle of the row, under nets; (3) negative control with no pollinators, under nets and (4) agronomic control with nearby bee hives (<50 m), without nets. Resulting post-harvest fruit quality (e.g., fruit weight, size, number and distribution of seeds) was evaluated, as well as correlations between bumble bee visitation rates and fruit quality parameters were evaluated. Results suggest that bumble bees provided adequate pollination under exclusion netting systems and that resulting fruit quality was equivalent to that of apple fruit conventionally pollinated by honey bees and wild bees community (bumble bees and other bees) in the orchard environment. Positioning bumble bee hives in the middle of the row provided better fruit load homogeneity in pollinated trees. Additional discussion on bumble bees as apple pollinators and on pollen distribution methods is also included.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Diane Bigot ◽  
Andreas Gogol-Döring ◽  
Peter Koch ◽  
Robert J Paxton

Abstract Honey bees suffer increasing colony mortality worldwide, partially caused by the spread of viral pathogens. Among these pathogens, deformed wing virus (DWV) is one of the major, widespread viruses of honey bees resulting in wing deformities and weakening colonies. DWV can be found in honey bees, bumble bees, and other wild bees as three major genotypes named DWV-A, -B (also named Varroa destructor virus 1), and -C. Various recombinants of DWV-A and -B have been previously found in honey bees, some of which have been suggested to have higher virulence over non-recombinant, parental virus. In most of these cases, recombinants were only shown as consensus sequences from previous assemblies and alignments and may not reflect the biological reality of all variants present within a host bee. It is therefore important to build a method of recombinant detection and quantification within mixed infections in single-host individuals, including both parental and various recombinant genomes, so as to evaluate the relevance of recombinants for viral genome evolution and the impact on hosts. Here, we propose to visualize and quantify these recombinants using next-generation sequencing data to better understand how these genomes evolve within bees. Our method will be performed directly from raw sequence reads from various datasets (including field and lab experiments as well as screening of public databases) in order to obtain an overview of DWV recombination in various in vivo and in vitro conditions. Recombination of viral genomes is a key point for virus evolution. The detection and quantification of recombination will facilitate analysis of the determinants of recombination and help in understanding the routes by which new viral variants emerge. The emergence of new (more virulent) recombinant viruses can result from acquisition of new capabilities, such as escape from host immunity or increased transmission rates. Recombination can also lead to adaptation to new environments and new hosts by a change in cell tropism, allowing cross-species transmission, which may be particularly relevant for bumble bees and wild bees infected by honey bee-derived DWV.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 600
Author(s):  
Luoluo Wang ◽  
Lieven Van Meulebroek ◽  
Lynn Vanhaecke ◽  
Guy Smagghe ◽  
Ivan Meeus

State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee’s hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 339
Author(s):  
Christopher A. Varnon ◽  
Ann Taylor Adams

The purpose of this paper is to establish the orange head cockroach (Eublaberus posticus) as a useful insect subject for research in comparative psychology by investigating habituation of the light-startle response (LSR). While one goal of comparative psychology is to compare the behavior of a diversity of species, many taxa, including cockroaches, are grossly underrepresented. Our work serves to improve this deficit by investigating habituation learning in the orange head cockroach in four experiments. In our first experiment, we found that LSR, and habituation of LSR, occurs to both lights being turned on and lights being turned off. In our second experiment, we found that the duration of a light did not affect response, and that spontaneous recovery of LSR occurs after 24 h intervals. In our third experiment, we found that the presence of food inhibited LSR. In our final experiment, we found that the rate of LSR habituation decreased as intertrial interval increased, in a manner predicted by established principles of habituation. Our work lays a strong foundation for future research on the behavior of orange head cockroaches as well as learning in cockroaches in general. We hope that our findings help establish cockroaches as practical insect subjects for research in comparative psychology and related fields such as behavior analysis and behavioral ecology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Meeus ◽  
Laurian Parmentier ◽  
Matti Pisman ◽  
Dirk C. de Graaf ◽  
Guy Smagghe

AbstractWild bees are in decline on a local to global scale. The presence of managed honey bees can lead to competition for resources with wild bee species, which has not been investigated so far for human-modified landscapes. In this study we assess if managed honey bee hive density influence nest development (biomass) of bumble bees, an important trait affecting fitness. We hypothesize that domesticated honey bees can negatively affect Bombus terrestris nest development in human-modified landscapes. In Flanders, Belgium, where such landscapes are dominantly present, we selected 11 locations with landscape metrics ranging from urban to agricultural. The bee hive locations were mapped and each location contained one apiary dense (AD) and one apiary sparse (AS) study site (mean density of 7.6 ± 5.7 managed honey bee hives per km2 in AD sites). We assessed the effect of apiary density on the reproduction of reared B. terrestris nests. Reared B. terrestris nests had more biomass increase over 8 weeks in apiary sparse (AS) sites compared to nests located in apiary dense (AD) sites. This effect was mainly visible in urban locations, where nest in AS sites have 99.25 ± 60.99 g more biomass increase compared to nest in urban AD sites. Additionally, we found that managed bumble bee nests had higher biomass increase in urban locations. We conclude that the density of bee hives is a factor to consider in regard to interspecific competition between domesticated honey bees and bumble bees.


2014 ◽  
Vol 92 (3) ◽  
pp. 179-184 ◽  
Author(s):  
Sarah A. Johnson ◽  
Ralph V. Cartar

Wing wear is widespread in flying insects, but its effects on flight are controversial. In this research, we examine the separate and combined effects of wing area and wing area asymmetry on maximum load-lifting capability in bumble bees Bombus impatiens Cresson, 1863. Individual bees with experimentally induced forewing wear (0%–24% forewing area loss, 0%–38% forewing area asymmetry) were harnessed with a string to which small bead groups were attached and tested in a flight chamber to measure the maximum weight that they could lift incrementally. Wing wear significantly decreased load-lifting ability: the higher the mean wing area loss, the less mass a bee could lift (2.66 mg load reduction per 1% forewing area loss, which represents ∼1.6% of mean body mass or ∼5.2% of expected mean nectar load). However, wing area asymmetry, both alone and in combination with area loss, had no detectable effect on maximum lift. The clear cost of wing wear for bumble bees is a linear reduction in weight-lifting capability through loss of wing area. This relatively strong diminution of load lifting by wing wear, observed over the range of wing area losses naturally accrued by wild bees, provides a potential mechanism for declining foraging ability and survivorship of worker bees with wing wear. What remains to be explained is the utter insensitivity of maximum load lifted to forewing asymmetry.


Sign in / Sign up

Export Citation Format

Share Document