scholarly journals The Bee Hemolymph Metabolome: A Window into the Impact of Viruses on Bumble Bees

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 600
Author(s):  
Luoluo Wang ◽  
Lieven Van Meulebroek ◽  
Lynn Vanhaecke ◽  
Guy Smagghe ◽  
Ivan Meeus

State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee’s hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.

2017 ◽  
Vol 2017 (1) ◽  
pp. 2286-2305 ◽  
Author(s):  
Zeyu Yang ◽  
Bruce P. Hollebone ◽  
Gong Zhang ◽  
Carl E. Brown ◽  
Chun Yang ◽  
...  

ABSTRACT2017-336: Diluted bitumen (dilbit), an oil sands product, may present new response challenges differing from conventional crude oil in terms of its potential environmental impacts. Simple naphthenic acids (NAs), a complex group of monocarboxylic acids, with a general formula CnH2n+zO2, may be present in the source bitumen or may be created by photolytic weathering. Knowing the composition and concentrations of NAs created during the photo-degradation process of dilbit will help understand the fate, behavior and toxicity of dilbit. In the present study, two diluted bitumen products, Cold Lake Blend (CLB) and Access Western Blend (AWB), were mixed with saltwater and irradiated with natural solar light (Ottawa, Canada, 45.4°N) over winter and summer seasons, to assess the impact of sunlight on the chemical fate of the dilbit. For comparison, a light, sweet crude oil was exposed under similar conditions. The samples were analyzed by high performance liquid chromatography-high resolution mass spectrometry to examine the molecular transformation of diluted bitumen by solar irradiation. The abundances of NAs in all three test oils increased significantly after 90 days of solar irradiation, strongly suggesting that polar NAs were formed by photolysis. Further, greater increases in NAs in the light crude were found than in the two dilbits. Similarly, the lighter oil had higher photolytic removal rates of petroleum hydrocarbons than the two dilbits. The concentrations of NAs in oils exposed during the summer were generally higher than those exposed in winter. During summer exposure, the abundance of total NAs increased up to the 30-day’s solar exposure, then fell again, indicating the transient nature of these compounds. However, net increases in polar NA compounds were observed for all the winter exposed samples. Greater increases were observed in the smaller NA compounds (average C-number decreased), also accompanied by an increase in saturation (average z-number decreased). These chemical changes strongly indicate the effect of sunlight on the potential behaviour, fate and effects of spilled oil, with creation of new resin group compounds and reduction of aromatics and saturates. These changes may affect the viscosity of the oil and its ability to uptake water. These chemical compositions also imply significant changes to the ecological effects of the oil following a spill when aged in sunlight.


2019 ◽  
Vol 20 (11) ◽  
pp. 2671 ◽  
Author(s):  
Barbara Patrizi ◽  
Mario Siciliani de Cumis ◽  
Silvia Viciani ◽  
Francesco D’Amato

Dioxins and related compounds are environmental xenobiotics that are dangerous to human life, due to the accumulation and persistence in the environment and in the food chain. Cancer, reproductive and developmental issues, and damage to the immune system and endocrine system are only a few examples of the impact of such substances in everyday life. For these reasons, it is fundamental to detect and monitor these molecules in biological samples. The consolidated technique for analytical evaluation is gas chromatography combined with high-resolution mass spectrometry. Nowadays, the development of mid-infrared optical components like broadband laser sources, optical frequency combs, high performance Fourier-transform infrared spectroscopy, and plasmonic sensors open the way to new techniques for detection and real time monitoring of these organic pollutants in gaseous or liquid phase, with sufficient sensitivity and selectivity, and in short time periods. In this review, we report the latest techniques for the detection of dioxins, furans and related compounds based on optical and spectroscopic methods, looking at future perspectives.


2021 ◽  
Author(s):  
Olivier Berry ◽  
Enora Briand ◽  
Alize Bagot ◽  
Maud Chaigne ◽  
Laurence Meslet-Cladiere ◽  
...  

The comprehension of microbial interactions is one of the key challenges in microbial ecology. The present study focuses on studying the chemical interaction between the toxic dinoflagellate Prorocentrum lima PL4V strain and associated fungal strains (two Penicillium sp. strains and three Aspergillus sp) among which the Aspergillus pseudoglaucus strain MMS1589 was selected for further co-culture experiment. Such rarely studied interaction (fungal-microalgal) was explored in axenic and non-axenic conditions, in a dedicated microscale marine environment (hybrid solid/liquid conditions), to delineate specialized metabolome alteration in relation to the P. lima and A. pseudoglaucus co-culture in regard to the presence of their associated bacteria. Such alteration was monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). In-depth analysis of the resulting data highlighted (1) the chemical modification associated to fungal-microalgal co-culture, and (2) the impact of associated bacteria in microalgal resilience to fungal interaction. Even if only a very low number of highlighted metabolites were fully characterised due to the poor chemical investigation of the studied species, a clear co-culture induction of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed. Such results highlight the importance to consider microalgal microbiome to study parameters regulating toxin production. Finally, a microscopic observation showed an unusual physical interaction between the fungal mycelium and the dinoflagellates.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Diane Bigot ◽  
Andreas Gogol-Döring ◽  
Peter Koch ◽  
Robert J Paxton

Abstract Honey bees suffer increasing colony mortality worldwide, partially caused by the spread of viral pathogens. Among these pathogens, deformed wing virus (DWV) is one of the major, widespread viruses of honey bees resulting in wing deformities and weakening colonies. DWV can be found in honey bees, bumble bees, and other wild bees as three major genotypes named DWV-A, -B (also named Varroa destructor virus 1), and -C. Various recombinants of DWV-A and -B have been previously found in honey bees, some of which have been suggested to have higher virulence over non-recombinant, parental virus. In most of these cases, recombinants were only shown as consensus sequences from previous assemblies and alignments and may not reflect the biological reality of all variants present within a host bee. It is therefore important to build a method of recombinant detection and quantification within mixed infections in single-host individuals, including both parental and various recombinant genomes, so as to evaluate the relevance of recombinants for viral genome evolution and the impact on hosts. Here, we propose to visualize and quantify these recombinants using next-generation sequencing data to better understand how these genomes evolve within bees. Our method will be performed directly from raw sequence reads from various datasets (including field and lab experiments as well as screening of public databases) in order to obtain an overview of DWV recombination in various in vivo and in vitro conditions. Recombination of viral genomes is a key point for virus evolution. The detection and quantification of recombination will facilitate analysis of the determinants of recombination and help in understanding the routes by which new viral variants emerge. The emergence of new (more virulent) recombinant viruses can result from acquisition of new capabilities, such as escape from host immunity or increased transmission rates. Recombination can also lead to adaptation to new environments and new hosts by a change in cell tropism, allowing cross-species transmission, which may be particularly relevant for bumble bees and wild bees infected by honey bee-derived DWV.


Author(s):  
Jair Gonzalez Marques ◽  
Engy Shokry ◽  
Klara Frivolt ◽  
Katharina Julia Werkstetter ◽  
Annecarin Brückner ◽  
...  

Little is known about the metabolic response of pediatric Crohn’s disease (CD) patients to partial enteral nutrition (PEN) therapy and the impact of disease activity and inflammation. We analyzed plasma samples from a nonrandomized controlled intervention study investigating the effect of partial enteral nutrition (PEN) on bone health and growth throughout one year with untargeted metabolomics using high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (HRMS). Thirty-four paired samples from two time points (baseline and 12 months) were analyzed. Patients (median age: 13.9 years, range: 7–18.9 years, 44% females) were in remission or had mild disease activity. The intervention group received a casein-based formula for 12 months, providing ~25% of estimated daily energy requirements. Sparse partial least squares discriminant analysis (splsda) was applied for group discrimination and identifying sources of variation to identify the impact of PEN. We also investigated the correlation of metabolites with inflammation markers, including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and fecal calprotectin. After 12 months, our results show substantial difference between PEN and non-PEN groups in the metabolome of CD patients in remission or with mild disease activity. Inflammatory markers were associated with individual compounds and chemical classes such as isoprenoids and phospholipids. Identified compounds comprise metabolites produced by human or bacterial metabolism, as well as xenobiotics recognized as flavoring agents and environmental contaminants and their biotransformation products. Further longitudinal studies that also include patients with higher disease activity are warranted to evaluate the suitability of these metabolic biomarkers for predicting disease activity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Chen ◽  
Jian Guo ◽  
Shipei Xing ◽  
Huaxu Yu ◽  
Tao Huan

Hair is a unique biological matrix that adsorbs short-term exposures (e. g., environmental contaminants and personal care products) on its surface and also embeds endogenous metabolites and long-term exposures in its matrix. In this work, we developed an untargeted metabolomics workflow to profile both temporal exposure chemicals and endogenous metabolites in the same hair sample. This analytical workflow begins with the extraction of short-term exposures from hair surfaces through washing. Further development of mechanical homogenization extracts endogenous metabolites and long-term exposures from the cleaned hair. Both solutions of hair wash and hair extract were analyzed using ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics for global-scale metabolic profiling. After analysis, raw data were processed using bioinformatic programs recently developed specifically for exposome research. Using optimized experimental conditions, we detected a total of 10,005 and 9,584 metabolic features from hair wash and extraction samples, respectively. Among them, 274 and 276 features can be definitively confirmed by MS2 spectral matching against spectral library, and an additional 3,356 and 3,079 features were tentatively confirmed as biotransformation metabolites. To demonstrate the performance of our hair metabolomics, we collected hair samples from three female volunteers and tested their hair metabolic changes before and after a 2-day exposure exercise. Our results show that 645 features from wash and 89 features from extract were significantly changed from the 2-day exposure. Altogether, this work provides a novel analytical approach to study the hair metabolome and exposome at a global scale, which can be implemented in a wide range of biological applications for a deeper understanding of the impact of environmental and genetic factors on human health.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


Sign in / Sign up

Export Citation Format

Share Document