scholarly journals ­­Effect of multimodal cues from a predatory fish on refuge use and foraging on an amphidromous shrimp

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11011
Author(s):  
Maria E. Ocasio-Torres ◽  
Todd A. Crowl ◽  
Alberto M. Sabat

Background Prey can alter their behavior when detecting predator cues. Little is known about which sensory channel, number of channels, or the interaction among channels that shrimp species use to evaluate the threat from predators. The amphidromous shrimp Xiphocaris elongata has an induced defense, an elongated rostrum, where predatory fishes are present. We sought to test if kairomones or visual cues when presented singly from fish either eating flakes or shrimp, had more effect on altering the temporal feeding and refuge use patterns of long-rostrum (LR) X. elongata. We were also interested in elucidating potential interactions among cues when presented simultaneously in different combinations (kairomones + visual + mechanosensory, kairomones + alarm + visual, kairomones + alarm, kairomones + visual) on the same response variables. We expected that when presented alone kairomones will significantly increase refuge use and decrease foraging, particularly late at night, in comparison to visual cues alone, and that multiple cues when presented simultaneously will further increase refuge use and decrease foraging at night. Methods We exposed shrimp to individual or multiple cues from the predatory fish mountain mullet, Augonostomus monticola. We examined shrimp behavior with respect to refuge use and foraging activity during four time periods (after sunset, nighttime, sunrise, and sunset) in a 24-hour period. Results Shrimp presented fish visual and chemical cues singly did not differ from one another but differed from control shrimp (no cues) with respect to refuge use or foraging. The number of shrimp using refuge in the treatment with most cues (KVM: kairomones+ visual + mechanosensory) was higher than in all the treatments with less cues. A significant decline in foraging was observed when multiple cues were presented simultaneously. The highest number of shrimp foraged one hour after sunset and at nighttime. A significant interaction was observed between cue treatments and time periods, with shrimp in the KVM treatment foraging less and using more refuge late at night and at sunrise than shrimp in other treatments or time periods. Conclusions The observation that fish chemical and visual cues when presented singly produced similar refuge use and foraging patterns was contrary to expectation and suggests that visual and chemical cues, when presented alone, provide redundant information to X. elongata with regards to predation threat. The significant increase in refuge use and reduction in foraging observed in the KVM treatment suggest multimodal signal enhancement in the perception of threat. This makes evolutionary sense in “noisy” environments, such as streams, where detection, localization, and intention of predators is much improved when cues are received through multiple sensory channels.

Behaviour ◽  
2009 ◽  
Vol 146 (11) ◽  
pp. 1485-1498 ◽  
Author(s):  
Nancy Kohn ◽  
Robert Jaeger

AbstractThe use of multiple cues can enhance the detection, recognition, discrimination, and memorability of individuals by receivers. We conducted two experiments, using only males, to test whether territorial red-backed salamanders, Plethodon cinereus, could use only chemical or only visual cues to remember familiar conspecifics. In both experiments, focal males spent significantly more time threatening unfamiliar than familiar male intruders. They also chemoinvestigated the filter paper containing chemical cues of unfamiliar intruders more often than that of familiar intruders. These results suggest that red-backed salamanders can use both chemical and visual cues to recognize familiar individuals, allowing them to distinguish between less threatening neighbours and more threatening intruders in the heterogeneous forest floor habitat, where visual cues alone would not always be available.


2007 ◽  
Vol 274 (1611) ◽  
pp. 845-851 ◽  
Author(s):  
Katie Costanzo ◽  
Antónia Monteiro

Investigating the relative importance of multiple cues for mate choice within a species may highlight possible mechanisms that led to the diversification of closely related species in the past. Here, we investigate the importance of close-range pheromones produced by male Bicyclus anynana butterflies and determine the relative importance of these chemical cues versus visual cues in sexual selection by female choice. We first blocked putative androconial organs on the fore- and hindwings of males, while also manipulating the ability of females to perceive chemical signals via their antenna. We found that male chemical signals were emitted by both fore- and hindwing pairs and that they play an important role in female choice. We subsequently tested the relative importance of these chemical cues versus visual cues, previously identified for this species, and found that they play an equally important role in female choice in our laboratory setting. In addition, females will mate with males with only one signal present and blocking both androconial organs on males seems to interfere with male to male recognition. We discuss the possible functions of these signals and how this bimodal system may be used in intra- and interspecific mate evaluation.


Behaviour ◽  
1998 ◽  
Vol 135 (8) ◽  
pp. 1213-1228 ◽  
Author(s):  
Renée Godard ◽  
Catherine Wannamaker ◽  
Bonnie Bowers

AbstractStudies of a limited number of species of fish in the superorder Ostariophysi have shown they they exhibit strong antipredator behaviour to conserved alarm substance in feces and in other byproducts from predatory fish that have consumed ostariophysans. Our experiments examined the ability of a previously untested ostariophysan to recognize chemical cues from two species of snake predators. In Experiment 1, shoals of golden shiners (Notemigonus chrysoleucas) exhibited strong shelter-seeking responses to water which contained waste byproducts from either a sympatric snake or an allopatric snake which had been fed golden shiners but not to a distilled water control. There was no difference in response to the sympatrie snake predator, northern water snakes (Nerodia sipedon), compared to the allopatric snake predator, black-bellied garter snakes (Thamnophis melanogaster). In Experiment 2, individual shiners exhibited vigourous dashing when presented with water which contained waste byproducts from N. sipedon fed golden shiners but exhibited a much weaker response to water which contained waste byproducts from N. sipedon fed green swordtails (Xiphophorus helleri, a non-ostariophysan) or to a water control. These results suggest that the alarm substance produced in the epidermis of the golden shiners is conserved in snake waste byproducts. Experiment 3 showed that there was little difference in shelter-seeking behaviour by shoals of shiners when presented with water in which N. sipedon had soaked, water in which T. melanogaster had soaked, or a distilled water control. Thus it appears that secretions from the skin of these predators may not be chemically labelled.


2019 ◽  
Vol 286 (1900) ◽  
pp. 20182745 ◽  
Author(s):  
O. Kennedy Rhoades ◽  
Steve I. Lonhart ◽  
John J. Stachowicz

Humans have restructured food webs and ecosystems by depleting biomass, reducing size structure and altering traits of consumers. However, few studies have examined the ecological impacts of human-induced trait changes across large spatial and temporal scales and species assemblages. We compared behavioural traits and predation rates by predatory fishes on standard squid prey in protected areas of different protection levels and ages, and found that predation rates were 6.5 times greater at old, no-take (greater than 40 years) relative to new, predominantly partial-take areas (approx. 8 years), even accounting for differences in predatory fish abundance, body size and composition across sites. Individual fishes in old protected areas consumed prey at nearly twice the rate of fishes of the same species and size at new protected areas. Predatory fish exhibited on average 50% longer flight initiation distance and lower willingness to forage at new protected areas, which partially explains lower foraging rates at new relative to old protected areas. Our experiments demonstrate that humans can effect changes in functionally important behavioural traits of predator guilds at large (30 km) spatial scales within managed areas, which require protection for multiple generations of predators to recover bold phenotypes and predation rates, even as abundance rebounds.


2005 ◽  
Vol 62 (9) ◽  
pp. 1978-1984 ◽  
Author(s):  
Justin J Meager ◽  
Turid Solbakken ◽  
Anne C Utne-Palm ◽  
Tina Oen

We investigated the effects of turbidity on the foraging behaviour of juvenile Atlantic cod (Gadus morhua) on mysid prey (Praunus neglectus) in the laboratory. The influence of turbidity on vision and chemoreception was examined by measuring reactive distances and search times to visual, chemical, and visual–chemical prey cues over turbidity levels ranging from 0.4 to 17·m–1 (beam attenuation·m–1). We also compared foraging rates of juvenile cod on mysids in highly turbid water and clear water under well lit and totally dark conditions. Juvenile cod using chemical cues were able to locate mysids from significantly longer distances than when only visual cues were available. Turbidity did not affect reactive distance to chemical cues, and had only a weak negative effect on reactive distance to visual and visual–chemical cues. Search time was variable, but tended to increase with turbidity. Turbidity did not affect predation rates on free-ranging mysids, but predation rates were significantly lower in dark conditions than in well lit conditions. We suggest that juvenile cod use chemoreception in conjunction with vision (at close ranges) to locate prey in highly turbid water.


Behaviour ◽  
2013 ◽  
Vol 150 (12) ◽  
pp. 1467-1489 ◽  
Author(s):  
Arielle Duhaime-Ross ◽  
Geneviève Martel ◽  
Frédéric Laberge

Many animals use and react to multimodal signals — signals that occur in more than one sensory modality. This study focused on the respective roles of vision, chemoreception, and their possible interaction in determining agonistic responses of the red-backed salamander, Plethodon cinereus. The use of a computer display allowed separate or combined presentation of visual and chemical cues. A cue isolation experiment using adult male and juvenile salamanders showed that both visual and chemical cues from unfamiliar male conspecifics could increase aggressive displays. Submissive displays were only increased in juveniles, and specifically by the visual cue. The rate of chemoinvestigation of the substrate was increased only by chemical cues in adults, whereas both chemical and visual cues increased this behaviour in juveniles. Chemoinvestigation appears, thus, more dependent on sensory input in juvenile salamanders. A follow-up experiment comparing responses to visual cues of different animals (conspecific salamander, heterospecific salamander and earthworm) or an inanimate object (wood stick) showed that exploratory behaviour was higher in the presence of the inanimate object stimulus. The heterospecific salamander stimulus produced strong submissive and escape responses, while the conspecific salamander stimulus promoted aggressive displays. Finally, the earthworm stimulus increased both aggressive and submissive behaviours at intermediate levels when compared to salamander cues. These specific combinations of agonistic and exploratory responses to each stimulus suggest that salamanders could discriminate the cues visually. This study sheds some light on how information from different sensory modalities guides social behaviour at different life stages in a salamander.


2015 ◽  
Vol 66 (2) ◽  
pp. 127 ◽  
Author(s):  
Culum Brown ◽  
Jennifer Morgan

Macquarie perch, Macquaria austalasica, is an endangered species endemic to southern Australia whose distribution is highly fragmented and continues to decline. Key threatening processes include habitat destruction, dams and weirs, overfishing and interactions with introduced species. Here, we examined the responses of small and large Macquarie perch to two native predators and to the introduced redfin perch, Perca fluviatilis. Our results showed that Macquarie perch generally avoided large-bodied native predators but was attracted to small-bodied native predators. Responses to large and small redfin perch lay between these two extremes, suggesting that the Macquarie perch does treat these foreign fish as potential threats. Macquarie perch relied on both visual and chemical cues to identify predators, although its response tended to be stronger when exposed to visual cues. The results suggest that Macquarie perch has the capacity to recognise and respond to invasive species in a threat-sensitive manner, which has positive implications for the conservation management of the species.


2000 ◽  
Vol 78 (9) ◽  
pp. 1646-1652 ◽  
Author(s):  
Alicia Mathis ◽  
Frank Vincent

For prey under the threat of predation, the ability to distinguish between different levels of danger can have important fitness consequences. Larval central newts, Notophthalmus viridescens louisianensis, distinguished between predatory (Ambystoma tigrinum tigrinum larvae) and nonpredatory (Hyla chrysoscelis/versicolor complex tadpoles) heterospecifics, but only when chemical cues were available. When only visual cues were present, larvae responded to both predatory and nonpredatory stimuli by reducing activity (fright response), but did not distinguish between the two types. Fine-scale discrimination of visual stimuli may have failed to develop because larval newts typically live in aquatic habitats in which chemical cues may be more reliable than visual cues, owing to large amounts of sediments and vegetation or possibly to myopia. Late-stage newt larvae that were approaching metamorphosis were unpalatable to A. t. tigrinum, and histological examination of the skin revealed that granular (poison) glands were present in the skin of late-stage but not early-stage larvae. Late-stage larvae did not distinguish between chemical stimuli from predators and nonpredators, which suggests that fright responses of larval newts are plastic and can be modified according to the level of perceived threat.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jingyao Wu ◽  
Ting Dang ◽  
Vidhyasaharan Sethu ◽  
Eliathamby Ambikairajah

People perceive emotions via multiple cues, predominantly speech and visual cues, and a number of emotion recognition systems utilize both audio and visual cues. Moreover, the perception of static aspects of emotion (speaker's arousal level is high/low) and the dynamic aspects of emotion (speaker is becoming more aroused) might be perceived via different expressive cues and these two aspects are integrated to provide a unified sense of emotion state. However, existing multimodal systems only focus on single aspect of emotion perception and the contributions of different modalities toward modeling static and dynamic emotion aspects are not well explored. In this paper, we investigate the relative salience of audio and video modalities to emotion state prediction and emotion change prediction using a Multimodal Markovian affect model. Experiments conducted in the RECOLA database showed that audio modality is better at modeling the emotion state of arousal and video for emotion state of valence, whereas audio shows superior advantages over video in modeling emotion changes for both arousal and valence.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb229245 ◽  
Author(s):  
Ke Deng ◽  
Qiao-Ling He ◽  
Ya Zhou ◽  
Bi-Cheng Zhu ◽  
Tong-Liang Wang ◽  
...  

ABSTRACTThere is increasing evidence that many anurans use multimodal cues to detect, discriminate and/or locate conspecifics and thus modify their behaviors. To date, however, most studies have focused on the roles of multimodal cues in female choice or male–male interactions. In the present study, we conducted an experiment to investigate whether male serrate-legged small treefrogs (Kurixalus odontotarsus) used visual or chemical cues to detect females and thus altered their competition strategies in different calling contexts. Three acoustic stimuli (advertisement calls, aggressive calls and compound calls) were broadcast in a randomized order after a spontaneous period to focal males in one of four treatment groups: combined visual and chemical cues of a female, only chemical cues, only visual cues and a control (with no females). We recorded the vocal responses of the focal males during each 3 min period. Our results demonstrate that males reduce the total number of calls in response to the presence of females, regardless of how they perceived the females. In response to advertisement calls and compound calls, males that perceived females through chemical cues produced relatively fewer advertisement calls but more aggressive calls. In addition, they produced relatively more aggressive calls during the playback of aggressive calls. Taken together, our study suggests that male K. odontotarsus adjust their competition strategies according to the visual or chemical cues of potential mates and highlights the important role of multisensory cues in male frogs' perception of females.


Sign in / Sign up

Export Citation Format

Share Document