scholarly journals Mining TCGA database for gene expression in ovarian serous cystadenocarcinoma microenvironment

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11375
Author(s):  
Youzheng Xu ◽  
Yixin Xu ◽  
Chun Wang ◽  
Baoguo Xia ◽  
Qingling Mu ◽  
...  

Background Ovarian cancer is one of the leading causes of female deaths worldwide. Ovarian serous cystadenocarcinoma occupies about 90% of it. Effective and accurate biomarkers for diagnosis, outcome prediction and personalized treatment are needed urgently Methods Gene expression profile for OSC patients was obtained from the TCGA database. The ESTIMATE algorithm was used to calculate immune scores and stromal scores of expression data of ovarian serous cystadenocarcinoma samples. Survival results between high and low groups of immune and stromal score were compared and differentially expressed genes (DEGs) were screened out by limma package. The Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the protein-protein interaction (PPI) network analysis were performed with the g:Profiler database, the Cytoscape and Search Tool for the Retrieval of Interacting Genes (STRING-DB). Survival results between high and low immune and stromal score groups were compared. Kaplan-Meier plots based on TCGA follow up information were generated to evaluate patients’ overall survival. Results Eighty-six upregulated DEGs and one downregulated DEG were identified. Three modules, which included 49 nodes were chosen as important networks. Seven DEGs (VSIG4, TGFBI, DCN, F13A1, ALOX5AP, GPX3, SFRP4) were considered to be correlated with poor overall survival. Conclusion Seven DEGs (VSIG4, TGFBI, DCN, F13A1, ALOX5AP, GPX3, SFRP4) were correlated with poor overall survival in our study. This new set of genes can become strong predictor of survival, individually or combined. Further investigation of these genes is needed to validate the conclusion to provide novel understanding of tumor microenvironment with ovarian serous cystadenocarcinoma prognosis and treatment.

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xueren Gao ◽  
Xixi Wang ◽  
Shulong Zhang

Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Up to date, HCC pathogenesis has not been fully understood. The aim of the present study was to identify crucial genes and pathways associated with HCC by bioinformatics methods. The differentially expressed genes (DEGs) between 14 HCC tissues and corresponding non-cancerous tissues were identified using limma package. Gene Ontology (GO) and KEGG pathway enrichment analysis of DEGs were performed by clusterProfiler package. The protein–protein interaction (PPI) network of DEGs was constructed and visualized by STRING database and Cytoscape software, respectively. The crucial genes in PPI network were identified using a Cytoscape plugin, CytoNCA. Furthermore, the effect of the expression level of the crucial genes on HCC patient survival was analyzed by an interactive web-portal, UALCAN. A total of 870 DEGs including 237 up-regulated and 633 down-regulated genes were identified in HCC tissues. KEGG pathway analysis revealed that DEGs were mainly enriched in complement and coagulation cascades pathway, chemical carcinogenesis pathway, retinol metabolism pathway, fatty acid degradation pathway, and valine, leucine and isoleucine degradation pathway. PPI network analysis showed that CDK1, CCNB1, CCNB2, MAD2L1, ACACB, IGF1, TOP2A, and EHHADH were crucial genes. Survival analysis suggested that the high expression of CDK1, CCNB1, CCNB2, MAD2L1, and TOP2A significantly decreased the survival probability of HCC patients. In conclusion, the identification of the above crucial genes and pathways will not only contribute to elucidating the pathogenesis of HCC, but also provide prognostic markers and therapeutic targets for HCC.


2020 ◽  
Author(s):  
Tong Li ◽  
Qiaofei Liu ◽  
Ronghua Zhang ◽  
Quan Liao ◽  
Yupei Zhao

Abstract Background: As one of the most lethal cancers, pancreatic cancer has been characterized by abundant supportive tumor-stromal cell microenvironment. Although the advent of tumor-targeted immune checkpoint blockers has brought light to patients with other cancers, its clinical efficacy in pancreatic cancer has been greatly limited due to the protective stroma . Thus, it is urgent to find potential new targets and establish multi-regulatory networks to predict patient prognosis andimprove treatment. Methods: We followed a strategy based on mining the Cancer Genome Atlas (TCGA) database and ESTIMATE algorithm to obtain the immune scores and stromal scores. Differentially expressed genes (DEGs) associated with poor overall survival of pancreatic cancer were screened from a TCGA cohort. By comparing global gene expression with high vs. low immune scores and subsequent Kaplan-Meier analysis, DEGs that significantly correlate with poor overall survival of pancreatic cancer in TCGA cohort were extracted. After constructing the protein-protein interaction network using STRING and limiting the genes within the above DEGs, we utilized RAID 2.0, TRRUST v2 database and degree and betweenness analysis to obtain non-coding RNA (ncRNA)-pivotal nodes and TF-pivotal nodes. Finally, multi-regulatory networks have been constructed and pivotal drugs with potential benefit for pancreatic cancer patients were obtained by screening in the DrugBank. Results: In this study, we obtained 246 DEGs that significantly correlate with poor overall survival of pancreatic cancer in the TCGA cohort. With the advent of 38 ncRNA-pivotal nodes and 7 TF-pivotal nodes, the multi-factor regulatory networks were constructed based on the above pivotal nodes. Prognosis-related genes and factors such as HCAR3, PPY, RFWD2, WSPAR and Amcinonide were screened and investigated. Conclusion: The multi-regulatory networks constructed in this study are not only beneficial to improve treatment and evaluate patient prognosis with pancreatic cancer, but also favorable for implementing early diagnosis and personalized treatment. It is suggested that these factors may play an essential role in the progression of pancreatic cancer.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaowei Li ◽  
Li Li

Abstract Background Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. Methods We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. Results A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. Conclusions Our study suggests that miR-182 is essential for the biological progression of OC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yajuan Cao ◽  
Weikang Zhu ◽  
Wanqing Chen ◽  
Jianchun Wu ◽  
Guozhen Hou ◽  
...  

Objective. This study was aimed at investigating the prognostic significance of Baculoviral IAP repeat containing 5 (BIRC5) in lung adenocarcinoma (LAD) lacking EGFR, KRAS, and ALK mutations (triple-negative (TN) adenocarcinomas). Methods. The gene expression profiles were obtained from Gene Expression Omnibus (GEO). The identification of the differentially expressed genes (DEGs) was performed by GeneSpring GX. Gene set enrichment analysis (GSEA) was used to execute gene ontology function and pathway enrichment analysis. The protein interaction network was constructed by Cytoscape. The hub genes were extracted by MCODE and cytoHubba plugin from the network. Then, using BIRC5 as a candidate, the prognostic value in LAD and TN adenocarcinomas was verified by the Kaplan-Meier plotter and The Cancer Genome Atlas (TCGA) database, respectively. Finally, the mechanism of BIRC5 was predicted by a coexpressed network and enrichment analysis. Results. A total of 38 upregulated genes and 121 downregulated genes were identified. 9 hub genes were extracted. Among them, the mRNA expression of 5 genes, namely, BIRC5, MCM4, CDC20, KIAA0101, and TRIP13, were significantly upregulated among TN adenocarcinomas (all P<0.05). Notably, only the overexpression of BIRC5 was associated with unfavorable overall survival (OS) in TN adenocarcinomas (log rank P=0.0037). TN adenocarcinoma patients in the BIRC5 high-expression group suffered from a significantly high risk of distant metastasis (P=0.046), advanced N stage (P=0.033), and tumor-bearing (P=0.031) and deceased status (P=0.003). The mechanism of BIRC5 and coexpressed genes may be linked closely with the cell cycle. Conclusion. Overexpressed in tumors, BIRC5 is associated with unfavorable overall survival in TN adenocarcinomas. BIRC5 is a potential predictor and therapeutic target in TN adenocarcinomas.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12697
Author(s):  
Zhengzhong Ni ◽  
Jun Lu ◽  
Weiyi Huang ◽  
Hanif Khan ◽  
Xuejun Wu ◽  
...  

Background Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Among the risk factors involved in liver carcinogenesis, hepatitis B virus (HBV) X protein (HBx) is considered to be a key regulator in hepatocarcinogenesis. Whether HBx promotes or protects against HCC remains controversial, therefore exploring new HBx-associated genes is still important. Methods HBx was overexpressed in HepG2, HepG2.2.15 and SMMC-7721 cell lines, primary mouse hepatocytes and livers of C57BL/6N mice. High-throughput RNA sequencing profiling of HepG2 cells with HBx overexpression and related differentially-expressed genes (DEGs), pathway enrichment analysis, protein-protein interaction networks (PPIs), overlapping analysis were conducted. In addition, Gene Expression Omnibus (GEO) and proteomic datasets of HBV-positive HCC datasets were used to verify the expression and prognosis of selected DEGs. Finally, we also evaluated the known oncogenic role of HBx by oncogenic array analysis. Results A total of 523 DEGs were obtained from HBx-overexpressing HepG2 cells. Twelve DEGs were identified and validated in cells transiently transfected with HBx and three datasets of HBV-positive HCC transcription profiles. In addition, using the Kaplan-Meier plotter database, the expression levels of the twelve different genes were further analyzed to predict patient outcomes. Conclusion Among the 12 identified HBx-associated hub genes, HBV-positive HCC patients expressing ARG1 and TAT showed a good overall survival (OS) and relapse-free survival (RFS). Thus, ARG1 and TAT expression could be potential prognostic markers.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Menghuang Zhao ◽  
Wenbin Huang ◽  
Shuangwei Zou ◽  
Qi Shen ◽  
Xueqiong Zhu

Aims. This study is aimed at identifying a prognostic signature for cervical cancer. Main Methods. The gene expression data and clinical information of cervical cancer and normal cervical tissues were acquired from The Cancer Genome Atlas and from three datasets of the Gene Expression Omnibus database. DESeq2 and Limma were employed to screen differentially expressed genes (DEGs). The overlapping DEGs among all datasets were considered the final DEGs. Then, the functional enrichment analysis was performed. Moreover, the Cox proportional hazards regression was performed to establish a prognostic signature of the DEGs. The Kaplan-Meier analysis was applied to test the model. Relationships between gene expression and clinicopathological parameters in cervical cancer, including age, HPV status, histology, stage, and lymph node metastasis, were analysed by the chi-square test. The somatic mutations of these prognostic genes were assessed through cBioPortal. The robustness of the model was verified in another two independent validation cohorts. Key Findings. In total, 169 overlapping upregulated genes and 29 overlapping downregulated genes were identified in cervical cancer compared with normal cervical tissues. Functional enrichment analysis indicated that the DEGs were mainly enriched in DNA replication, the cell cycle, and the p53 signalling pathway. Finally, a 5-gene- (ITM2A, DSG2, SPP1, EFNA1, and MMP1) based prognostic signature was built. According to this model, each patient was given a prognostic-related risk value. The Kaplan-Meier analysis showed that a higher risk was related to worse overall survival in cervical cancer, with an area under the receiver operating characteristic curve of 0.811 for 15 years. The validity of this model in the prediction of cervical cancer outcome was verified in another two independent datasets. In addition, our study also found that the low expression of ITM2A was associated with cervical adenocarcinoma. Interestingly, DSG2 was associated with the HPV status of cervical cancer. Significance. Our study constructed a prognostic model in cervical cancer and discovered two novel genes, ITM2A and DSG2, associated with cervical carcinogenesis and survival.


2020 ◽  
Author(s):  
Qiangwei Chi ◽  
Shizuan Chen ◽  
Shaotang Li

Abstract Background Colon cancer is a common tumor of the digestive tract worldwide. Recent researches have revealed that colon cancer exhibits distinct differences in clinical and biological characteristics depending on the location of the tumor. However, the underlying genetic and molecular mechanism of the differences between right-sided colon cancer (RCC) and left-sided colon cancer (LCC) are not fully understood. This study aimed to identify molecular potential biomarkers and therapeutic targets for precise treatment of right-sided and left-sided colon cancer using bioinformatics analysis. Methods The gene microarray profile, named GSE44076, from the Gene Expression Omnibus (GEO) public database was downloaded and processed to then select differentially expressed genes (DEGs) on the base of two sample groups of RCC and LCC. Also, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein–protein interaction (PPI) network construction, module analysis, validation of hub genes, and survival analysis. Results Finally, we obtained 2259 DEGs between RCC and LCC, 1300 of which were upregulated in RCC and 945 of which were upregulated in LCC. The results of GO and KEGG analysis of the DEGs indicated that the biological functions of DEGs in RCC and LCC were significantly different. CTLA4, IL10, IL2RB, IFNG, NCAM1, EGFR, MYC, SRC, CUL3, and NCBP2 were identified from the PPI networks as the hub genes of RCC and LCC. Among the hub genes, the log-rank tests for overall survival (OS) and disease free survival (DFS) were applied. Moreover, all hub genes, except CUL3, had differential expression levels of miRNA between tumor group and normal group. Conclusion These hub genes and pathways identified based on bioinformatics analysis might conduce to explain the differences between RCC and LCC, and most of the hub genes were specific to the malignant tissues. Notably, these hub genes, especially the genes associated with immunotherapy such as CTLA4, might be potential specific targets or prognostic markers for precise treatment of colon cancer.


2020 ◽  
Author(s):  
Linlin Yang ◽  
Yunxia Cui ◽  
Ting Huang ◽  
Xiao Sun ◽  
Yudong Wang

Abstract Background: Progestin resistance is a critical obstacle for endometrial conservative therapy. Therefore, the studies to acquire a more comprehensive understanding of the mechanisms and specific biomarkers to predict progestin resistance are very important. However, the pivotal roles of essential molecules of progestin resistance are still unexplored. Methods: We downloaded GSE121367 with gene expression profiles of medroxyprogesterone acetate (MPA) resistant and sensitive cell lines from the GEO database. The “limma” R language package was applied to identify differentially expressed genes (DEGs). Gene ontology and pathway enrichment analysis was performed through the database of DAVID. Meanwhile, we conducted GSEA analysis to identify pathway enrichments. Protein–protein interaction construction of top genes was conducted to screen hub genes by STRING and visualized in Cytoscape. A high connectivity degree of hub genes were picked out to perform the differential expression, methylation validation and overall survival analysis in the Gene Expression Profiling Interactive Analysis database, Human Protein Atlas database and Kaplan–Meier plotter online tool, respectively. In addition, microRNAs and upstream transcription factors of hub genes were predicted by miRTarBase and Network Analyst database. Results: A total number of 3282 differentially expressed genes were identified. Functional enrichment analysis demonstrated that these genes were mostly enriched in negative regulation of DNA binding, chronic inflammatory response and cell adhesion molecules pathway. We screened out ten hub genes including CDH1, JAG1, PTGES, EPCAM, CNTNAP2, TBX1, MSX1, KRT19, OAS1 and DAB2 among different groups. The genomic alteration rates of hub genes were low based on the current uterine corpus endometrial carcinoma sample sets. Their relevant microRNA and transcription factor were detected and has-miR-335-5p, has-miR-124-3p, MAZ and TFDP1 were the most prominent. The methylation status of CDH1, JAG1, EPCAM and MSX1 were decreased, corresponding to their high protein expression in endometrial cancers, which also indicated better overall survival. The homeobox protein of MSX1 showed significantly tissue specificity. Conclusions: Our study identified ten hub genes associated with progestin resistance of endometrial cancer and screened out the gene of MSX1 which promised to be the specific indicator. This would shed new light on the underlying biological marker to overcome the progestin resistance of endometrial cancer. Keywords : Bioinformatic analysis, Progestin resistance, Endometrial carcinoma, MSX1


2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document