scholarly journals Screening and identification of MSX1 for predicting progestin resistance in endometrial cancer

2020 ◽  
Author(s):  
Linlin Yang ◽  
Yunxia Cui ◽  
Ting Huang ◽  
Xiao Sun ◽  
Yudong Wang

Abstract Background: Progestin resistance is a critical obstacle for endometrial conservative therapy. Therefore, the studies to acquire a more comprehensive understanding of the mechanisms and specific biomarkers to predict progestin resistance are very important. However, the pivotal roles of essential molecules of progestin resistance are still unexplored. Methods: We downloaded GSE121367 with gene expression profiles of medroxyprogesterone acetate (MPA) resistant and sensitive cell lines from the GEO database. The “limma” R language package was applied to identify differentially expressed genes (DEGs). Gene ontology and pathway enrichment analysis was performed through the database of DAVID. Meanwhile, we conducted GSEA analysis to identify pathway enrichments. Protein–protein interaction construction of top genes was conducted to screen hub genes by STRING and visualized in Cytoscape. A high connectivity degree of hub genes were picked out to perform the differential expression, methylation validation and overall survival analysis in the Gene Expression Profiling Interactive Analysis database, Human Protein Atlas database and Kaplan–Meier plotter online tool, respectively. In addition, microRNAs and upstream transcription factors of hub genes were predicted by miRTarBase and Network Analyst database. Results: A total number of 3282 differentially expressed genes were identified. Functional enrichment analysis demonstrated that these genes were mostly enriched in negative regulation of DNA binding, chronic inflammatory response and cell adhesion molecules pathway. We screened out ten hub genes including CDH1, JAG1, PTGES, EPCAM, CNTNAP2, TBX1, MSX1, KRT19, OAS1 and DAB2 among different groups. The genomic alteration rates of hub genes were low based on the current uterine corpus endometrial carcinoma sample sets. Their relevant microRNA and transcription factor were detected and has-miR-335-5p, has-miR-124-3p, MAZ and TFDP1 were the most prominent. The methylation status of CDH1, JAG1, EPCAM and MSX1 were decreased, corresponding to their high protein expression in endometrial cancers, which also indicated better overall survival. The homeobox protein of MSX1 showed significantly tissue specificity. Conclusions: Our study identified ten hub genes associated with progestin resistance of endometrial cancer and screened out the gene of MSX1 which promised to be the specific indicator. This would shed new light on the underlying biological marker to overcome the progestin resistance of endometrial cancer. Keywords : Bioinformatic analysis, Progestin resistance, Endometrial carcinoma, MSX1

2021 ◽  
Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Zuo ◽  
Gui-Mei Qu ◽  
Xiao Song ◽  
Zhong-Hui Liu ◽  
...  

Abstract Background The molecular pathogenesis of endometrial cancer is not completely understood. CypB upregulated in many cancers, however, its role in endometrial carcinoma has not been studied. Here, we determine the effect of CypB on the growth of endometrial cancer. Methods In this study, we examined the expression of CypB in endometrial cancer tissues using immunohistochemistry. CypB silenced in HEC-1-B cell line by shRNA. CCK-8, colony formation assays, wound healing assays, and transwell analysis were performed to assess its effect on tumor cell proliferation and metastasis. Furthermore, microarray analysis was carried out to compare the global mRNA expression profile between the HEC-1-B and CypB-silenced HEC-1-B cells. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of differentially expressed genes related to CypB. Results We found that CypB was upregulated in endometrial cancer, inhibit CypB expression could significantly suppress cell proliferation, metastasis, and migration. We identified 1536 differentially expressed genes related to CypB (onefold change, p < 0.05), among which 652 genes were upregulated and 884 genes were downregulated. The genes with significant difference in top were mainly enriched in the cell cycle, glycosphingolipid biosynthesis, adherens junctions, and metabolism pathways. Conclusion The results of our study suggest that CypB may serve as a novel regulator of endometrial cell proliferation and metastasis, thus representing a novel target for gene-targeted endometrial therapy. Trial registration YLYLLS [2018] 008. Registered 27 November 2017.


2020 ◽  
Author(s):  
Jing Liu ◽  
Ying Zuo ◽  
Gui-Mei Qu ◽  
Xiao Song ◽  
Zhong-Hui Liu ◽  
...  

Abstract BACKGROUND: The molecular pathogenesis of endometrial cancer is not completely understood. CypB upregulated in many cancers, however, its role in endometrial carcinoma has not been studied. Here, we determine the effect of CypB on the growth of endometrial cancer. METHODS: In this study, we examined the expression of CypB in endometrial cancer tissues using immunohistochemistry. CypB silenced in HEC-1-B cell line by shRNA. CCK-8, colony formation assays, wound healing assays, and transwell analysis were performed to assess its effect on tumor cell proliferation and metastasis . Furthermore, microarray analysis was carried out to compare the global mRNA expression profile between the HEC-1-B and CypB-silenced HEC-1-B cells. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of differentially expressed genes related to CypB. RESULTS: We found that CypB was upregulated in endometrial cancer, inhibit CypB expression could significantly suppress cell proliferation, metastasis, and migration. We identified 1536 differentially expressed genes related to CypB (onefold change, p< 0.05), among which 652 genes were upregulated and 884 genes were downregulated. The genes with significant difference in top were mainly enriched in the cell cycle, glycosphingolipid biosynthesis, adherens junctions, and metabolism pathways. CONCLUSIONS: The results of our study suggest that CypB may serve as a novel regulator of endometrial cell proliferation and metastasis, thus representing a novel target for gene-targeted endometrial therapy.Trial registration: YLYLLS [2018] 008. Registered 27 November 2017


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8831 ◽  
Author(s):  
Xiaojiao Guan ◽  
Yao Yao ◽  
Guangyao Bao ◽  
Yue Wang ◽  
Aimeng Zhang ◽  
...  

Esophageal cancer is a common malignant tumor in the world, and the aim of this study was to screen key genes related to the development of esophageal cancer using a variety of bioinformatics analysis tools and analyze their biological functions. The data of esophageal squamous cell carcinoma from the Gene Expression Omnibus (GEO) were selected as the research object, processed and analyzed to screen differentially expressed microRNAs (miRNAs) and differential methylation genes. The competing endogenous RNAs (ceRNAs) interaction network of differentially expressed genes was constructed by bioinformatics tools DAVID, String, and Cytoscape. Biofunctional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of the screened genes and the survival of the patients were verified. By analyzing GSE59973 and GSE114110, we found three down-regulated and nine up-regulated miRNAs. The gene expression matrix of GSE120356 was calculated by Pearson correlation coefficient, and the 11696 pairs of ceRNA relation were determined. In the ceRNA network, 643 lncRNAs and 147 mRNAs showed methylation difference. Functional enrichment analysis showed that these differentially expressed genes were mainly concentrated in the FoxO signaling pathway and were involved in the corresponding cascade of calcineurin. By analyzing the clinical data in The Cancer Genome Atlas (TCGA) database, it was found that four lncRNAs had an important impact on the survival and prognosis of esophageal carcinoma patients. QRT-PCR was also conducted to identify the expression of the key lncRNAs (RNF217-AS1, HCP5, ZFPM2-AS1 and HCG22) in ESCC samples. The selected key genes can provide theoretical guidance for further research on the molecular mechanism of esophageal carcinoma and the screening of molecular markers.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Bingye Zhang ◽  
Di Meng ◽  
Chunlin Ge

Abstract Background The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. Methods The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. Results We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Conclusions Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.


2020 ◽  
Author(s):  
Wei Han ◽  
Guo-liang Shen

Abstract Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing researches showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles. Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, functional enrichment analysis of MeDEGs were performed. STRING and Cytoscape were used to describe protein-protein interaction(PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Finally, we conducted gene set enrichment analysis (GSEA) of hub genes. Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precise medicine.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Binfeng Liu ◽  
Ang Li ◽  
Hongbo Wang ◽  
Jialin Wang ◽  
Gongwei Zhai ◽  
...  

The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii277-iii277
Author(s):  
Wei Liu ◽  
Yi Chai ◽  
Junhua Wang ◽  
Yuqi Zhang

Abstract BACKGROUND Atypical teratoid/rhabdoid tumors (ATRT) are rare, highly malignant neoplasms arising in infants and young children. However, the biological basis of ATRTs remains poorly understood. In the present study, we employed integrated bioinformatics to investigate the hub genes and potential molecular mechanism in ATRT. METHODS Three microarray datasets, GSE35943, GSE6635 and GSE86574, were downloaded from Gene Expression Omnibus (GEO) which contained a total of 79 samples including 32 normal brain tissue samples and 47 ATRT samples. The RobustRankAggreg method was employed to integrate the results of these gene expression datasets to obtain differentially expressed genes (DEGs). The GO function and KEGG pathway enrichment analysis were conducted at the Enrichr database. The hub genes were screened according to the degree using Cytoscape software. Finally, transcription factor (TF) of hub genes were obtained by the NetworkAnalyst algorithm. RESULTS A total of 297 DEGs, consisting of 94 downregulated DEGs and 103 upregulated DEGs were identified. Functional enrichment analysis revealed that these genes were associated with cell cycle, p53 signaling pathway and DNA replication. Protein-protein interaction (PPI) network analysis revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A and TTK were hub genes and these genes could be regulated by MYC, SOX2 and KDM5B according to the results of TF analysis. CONCLUSIONS Our study will improve the understanding of the molecular mechanisms and provide novel therapeutic targets for ATRT.


2021 ◽  
Author(s):  
Baoliang Zhang ◽  
Lei Yuan ◽  
Guanghui Chen ◽  
Xi Chen ◽  
Xiaoxi Yang ◽  
...  

Abstract Background: Obese individuals predispose to ossification of ligamentum flavum (OLF), whereas the underlying connections between obesity phenotype and OLF pathomechanism are not fully understood, especially during early life. This study aimed to explore obesity-associated genes and their functional signatures in OLF. Methods: Gene microarray expression data related to OLF were downloaded from the GSE106253 dataset in the Gene Expression Omnibus (GEO) database. The potential obesity-related differentially expressed genes (ORDEGs) in OLF were screened. Then, gene-ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied for these genes. Furthermore, protein-protein interactions (PPI) were used to identify hub ORDEGs, and Metascape was used to further verify the key signaling pathways and immune-related function signatures of hub ORDEGs. Finally, correlation analysis of hub ORDEGs and identified OLF-related infiltrating immune cells (OIICs) was constructed to understand the possible mechanical link among obesity, immune response and OLF. Results: OLF-related differentially expressed genes and 2051 obesity-related genes from four databases were intersected to obtain 99 ORDEGs, including 54 upregulated and 55 downregulated genes. GO and KEGG analysis revealed that these genes were mainly involved in metabolism, inflammation and immune-related biological functions and pathways. A PPI network was established to determine 14 hub genes (AKT1, CCL2, CCL5, CXCL2, ICAM1, IL10, MYC, PTGS2, SAA1, SOCS1, SOCS3, STAT3, TNFRSF1B and VEGFA). The co-expression network demonstrated that this module was associated with cellular response to biotic stimulus, regulation of inflammatory response, regulation of tyrosine phosphorylation of STAT protein. Furthermore, Metascape functional annotations showed that hub genes were mainly involved in receptor signaling pathway via JAK-STAT, response to TNF and regulation of defense response, and their representative enriched pathways were TNF, adipocytokine and JAK-STAT signaling pathways. Subgroup analysis indicated that T cell activation might be potential immune function processes involved, and correlation analysis revealed that cDCs, memory B-cells and preadipocytes were highly correlated infiltrating immune cells. Conclusions: Our study deciphered individualized obesity-associated gene signature for the first time, which may facilitate exploring the underlying cellular and molecular pathogenesis and novel therapeutic targets of obesity-related early-onset OLF.


Sign in / Sign up

Export Citation Format

Share Document