scholarly journals Morphometric and microsatellite-based comparative genetic diversity analysis in Bubalus bubalis from North India

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11846
Author(s):  
Vikas Vohra ◽  
Narendra Pratap Singh ◽  
Supriya Chhotaray ◽  
Varinder Singh Raina ◽  
Alka Chopra ◽  
...  

To understand the similarities and dissimilarities of a breed structure among different buffalo breeds of North India, it is essential to capture their morphometric variation, genetic diversity, and effective population size. In the present study, diversity among three important breeds, namely, Murrah, Nili-Ravi and Gojri were studied using a parallel approach of morphometric characterization and molecular diversity. Morphology was characterized using 13 biometric traits, and molecular diversity through a panel of 22 microsatellite DNA markers recommended by FAO, Advisory Group on Animal Genetic Diversity, for diversity studies in buffaloes. Canonical discriminate analysis of biometric traits revealed different clusters suggesting distinct genetic entities among the three studied populations. Analysis of molecular variance revealed 81.8% of genetic variance was found within breeds, while 18.2% of the genetic variation was found between breeds. Effective population sizes estimated based on linkage disequilibrium were 142, 75 and 556 in Gojri, Nili-Ravi and Murrah populations, respectively, indicated the presence of sufficient genetic variation and absence of intense selection among three breeds. The Bayesian approach of STRUCTURE analysis (at K = 3) assigned all populations into three clusters with a degree of genetic admixture in the Murrah and Nili-Ravi buffalo populations. Admixture analysis reveals introgression among Murrah and Nili-Ravi breeds while identified the Gojri as unique buffalo germplasm, indicating that there might be a common origin of Murrah and Nili-Ravi buffaloes. The study provides important insights on buffalo breeds of North India that could be utilized in designing an effective breeding strategy, with an appropriate choice of breeds for upgrading local non-descript buffaloes along with conservation of unique germplasm.

Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 119 ◽  
Author(s):  
Petr Smýkal ◽  
Matthew Nelson ◽  
Jens Berger ◽  
Eric Von Wettberg

Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.


Rangifer ◽  
2016 ◽  
Vol 36 (1) ◽  
pp. 1 ◽  
Author(s):  
Keri McFarlane ◽  
Anne Gunn ◽  
Mitch Campbell ◽  
Mathieu Dumond ◽  
Jan Adamczewski ◽  
...  

Migratory barren-ground caribou (Rangifer tarandus groenlandicus) provide an opportunity to examine the genetic population structure of a migratory large mammal whose movements and distribution, in some instances, have not been heavily influenced by human activities that result in habitat loss or fragmentation. These caribou have likely reached large effective population sizes since their rapid radiation during the early Holocene despite cyclic changes in abundance. Migratory barren-ground caribou are managed as discrete subpopulations. We investigated genetic variation among those subpopulations to determine the patterns of genetic diversity within and among them, and the implications for long-term persistence of caribou. We identified three distinct genetic clusters across the Canadian arctic tundra: the first cluster consisted of all fully-continental migratory barren-ground subpopulations; the second cluster was the Dolphin and Union caribou; and the third cluster was caribou from Southampton Island. The Southampton Island caribou are especially genetically distinct from the other barren-ground type caribou. Gene flow among subpopulations varied across the range. Occasional gene flow across the sea-ice is likely the reason for high levels of genetic variation in the Dolphin and Union subpopulation, which experienced very low numbers in the past. These results suggest that for most migratory caribou subpopulations, connectivity among subpopulations plays an important role in maintaining natural genetic diversity. Our analyses provide insight into the levels of microsatellite genetic diversity and patterns of gene flow that may be common to large subpopulations that historically had a continuous distribution across a large continental range. These data can also be used as a benchmark to compare the effects of habitat fragmentation and bottlenecks on other large caribou populations.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 441 ◽  
Author(s):  
Thomas W. R. Harrop ◽  
Marissa F. Le Lec ◽  
Ruy Jauregui ◽  
Shannon E. Taylor ◽  
Sarah N. Inwood ◽  
...  

Modified, agricultural landscapes are susceptible to damage by insect pests. Biological control of pests is typically successful once a control agent has established, but this depends on the agent’s capacity to co-evolve with the host. Theoretical studies have shown that different levels of genetic variation between the host and the control agent will lead to rapid evolution of resistance in the host. Although this has been reported in one instance, the underlying genetics have not been studied. To address this, we measured the genetic variation in New Zealand populations of the pasture pest, Argentine stem weevil (Listronotus bonariensis), which is controlled with declining effectiveness by a parasitoid wasp, Microctonus hyperodae. We constructed a draft reference genome of the weevil, collected samples from a geographical survey of 10 sites around New Zealand, and genotyped them using a modified genotyping-by-sequencing approach. New Zealand populations of Argentine stem weevil have high levels of heterozygosity and low population structure, consistent with a large effective population size and frequent gene flow. This implies that Argentine stem weevils were able to evolve more rapidly than their biocontrol agent, which reproduces asexually. These findings show that monitoring genetic diversity in biocontrol agents and their targets is critical for long-term success of biological control.


2000 ◽  
Vol 75 (3) ◽  
pp. 331-343 ◽  
Author(s):  
ARMANDO CABALLERO ◽  
MIGUEL A. TORO

Genetic parameters widely used to monitor genetic variation in conservation programmes, such as effective number of founders, founder genome equivalents and effective population size, are interrelated in terms of coancestries and variances of contributions from ancestors to descendants. A new parameter, the effective number of non-founders, is introduced to describe the relation between effective number of founders and founder genome equivalents. Practical recommendations for the maintenance of genetic variation in small captive populations are discussed. To maintain genetic diversity, minimum coancestry among individuals should be sought. This minimizes the variances of contributions from ancestors to descendants in all previous generations. The method of choice of parents and the system of mating should be independent of each other because a clear-cut recommendation cannot be given on the latter.


2021 ◽  
Author(s):  
Reda H. Helmy Sammour ◽  
A-Z. A. Mustafa

Abstract Understanding of the molecular basis of genetic diversity in Lactucaaccessions is substantial for the management, improvementand efficient uses of Lactuca accessions. Therefore, this workaimed to evaluate molecular diversity among twenty-six accessions of Lactuca species usingisozymes and RAPD analyses. The polymorphic percentages were 87.09%and 100% in isozymes and RAPD analyses respectively, indicating a high genetic variation within and among Lactuca species. The number of alleles were higher in the wild species compared to the cultivated species, reflecting a reduction in the richness of alleles in the cultivated species due to domestication that caused a reduction in genetic diversity to meet the demand for high crop productivity.Isozymes and RAPD clustering dendrogrames: (1) separated,L. sativa accessions in more than one cluster confirming their polyphyletic origin; (2)collected the accessions of L. vimineain one cluster revealed its homogeneity; and (3) divided the accessions of L.saligna in two clusters varied in the number of alleles, particularly “A” form. The corresponding analysis associated the accessions of the wild species based on the alleles “B”of the tested isozymes and the cultivated species on alleles “A” and “C”, suggesting that: (1) allele “B” might be the primitive form of these loci that can tolerate the environmental stresses which prevails in the habitats of the wild species, and (2) “A” and “C” could be the derived forms. These results are of great interest for the management of Lactuca germplasm and for future breeding programs of lettuce.


2021 ◽  
Author(s):  
Michaela Halsey ◽  
John Stuhler ◽  
Natalia J Bayona-Vasquez ◽  
Roy N Platt ◽  
Jim R Goetze ◽  
...  

Organisms with low effective population sizes are at greater risk of extinction because of reduced genetic diversity.   Dipodomys elator  is a kangaroo rat that is classified as threatened in Texas and field surveys from the past 50 years indicate that the distribution of this species has decreased. This suggests geographic range reductions that could have caused population fluctuations, potentially impacting effective population size. Conversely, the more common and widespread  D. ordii  is thought to exhibit relative geographic and demographic stability. Genetic variation between  D. elator  and  D. ordii  samples was assessed using 3RAD, a modified restriction site associated sequencing approach. It was hypothesized that  D. elator  would show lower levels of nucleotide diversity, observed heterozygosity, and effective population size when compared to  D. ordii . Also of interest was identifying population structure within contemporary samples of  D. elator  and detecting genetic variation between temporal samples that could indicate demographic dynamics. Up to 61,000 single nucleotide polymorphisms were analyzed. It was determined that genetic variability and effective population size in contemporary  D. elator  populations were lower than that of  D. ordii, that there is only slight, if any, structure within contemporary  D. elator  populations, and there is little genetic differentiation between spatial or temporal historical samples suggesting little change in nuclear genetic diversity over 30 years. Results suggest that genetic diversity of  D. elator  has remained stable despite claims of reduced population size and/or abundance, which may indicate a metapopulation-like system, whose fluctuations might counteract any immediate decrease in fitness.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11039
Author(s):  
Gabriele Casazza ◽  
Carmelo Macrì ◽  
Davide Dagnino ◽  
Maria Guerrina ◽  
Marianick Juin ◽  
...  

BackgroundQuantifying variation of genetic traits over the geographical range of species is crucial for understanding the factors driving their range dynamics. The center-periphery hypothesis postulates, and many studies support, the idea that genetic diversity decreases and genetic differentiation increases toward the geographical periphery due to population isolation. The effects of environmental marginality on genetic variation has however received much less attention.MethodsWe tested the concordance between geographical and environmental gradients and the genetic predictions of center-periphery hypothesis for endemicLilium pomponiumin the southern Alps.ResultsWe found little evidence for concordance between genetic variation and both geographical and environmental gradients. Although the prediction of increased differentiation at range limits is met, genetic diversity does not decrease towards the geographical periphery. Increased differentiation among peripheral populations, that are not ecologically marginal, may be explained by a decrease in habitat availability that reduces population connectivity. In contrast, a decrease of genetic diversity along environmental but not geographical gradients may be due to the presence of low quality habitats in the different parts of the range of a species that reduce effective population size or increase environmental constraints. As a result, environmental factors may affect population dynamics irrespective of distance from the geographical center of the range. In such situations of discordance between geographical and environmental gradients, the predictions of decreasing genetic diversity and increasing differentiation toward the geographical periphery may not be respected.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jana Bozáňová ◽  
Fedor Čiampor Jr ◽  
Tomasz Mamos ◽  
Michal Grabowski ◽  
Zuzana Čiamporová-Zaťovičová

DNA barcoding has proven to be an essential tool in providing molecular tags for animal species. In addition, the value of DNA barcoding undoubtedly consists in giving information about intraspecific genetic diversity, which is of great importance for biodiversity monitoring and conservation assessments. Such data are especially valuable in case of biodiversity hot-spots. Therefore, the aim of our study was to expand the knowledge of the genetic patterns and distribution of the caddisfly Rhyacophila tristis (Trichoptera, Rhyacophilidae) population in one such biodiversity hotspot - The Western Carpathians. The W Carpathians include rich freshwater systems of springs and streams, where molecular diversity and phylogeographic patterns of aquatic fauna are yet to be fully explored. Based on the mitochondrial DNA barcoding fragment (COI-5P) of 161 sequences, two BINs representing distinct lineages within R. tristis were identified. BIN BOLD:AAD5574 occurred in 16 localities to the west and BIN BOLD:ADL4166 in 44 localities more to the east, with contact zone in the middle of the mountain system (Fig. 1). BIN BOLD:AAD5574 occurred at a significantly narrower altitudinal interval compared to BIN BOLD:ADL4166, but we did not record significant differences in molecular diversity between BINs. Likewise, past population growth was found in both lineages. Both BINs started to expand demographically at the beginning of the Last Glacial Maximum, however BIN BOLD: ADL4166 increased its demography more sharply compared to BIN BOLD:AAD5574, moreover the effective population size of BIN BOLD:ADL4166 was much higher. BIN BOLD:ADL4166, showing a significantly wider range of altitude, has probably found higher potential for dispersal to various mountain units in the area of the W Carpathians. Our results showed also that BIN BOLD:ADL4166 is more closely related to the separate R. tristis BIN BOLD: ADL4367 recognized in Bulgaria than to the BIN BOLD:AAD5574 occurring geographically in the same mountain system. Additionally, different patterns of population expansion of BIN BOLD:ADL4166 between springs and streams were found. These differences may have occurred due to specific environmental conditions of the karstic springs, which are considered as relatively isolated aquatic habitats. Our initial study of R. tristis phylogeography in W Carpathians opens several new important questions: Is it possible that BIN BOLD:ADL4166 is expanding from the eastern part of Europe (Bulgaria) to the colder streams in the W Carpathians during the LGM? What role do the W Carpathian springs play in maintaining the genetic diversity and sustainability of R. tristis? Could these relatively isolated aquatic habitats serve as postglacial refugia for R. tristis species? And, maybe also, are they two separate species? This contribution was partially supported by the project VEGA 2/0084/21 and VEGA 1/0127/20.


2009 ◽  
Vol 36 (7) ◽  
pp. 601 ◽  
Author(s):  
Mark M. Tanaka ◽  
Romane Cristescu ◽  
Desmond W. Cooper

Context. The management of wildlife populations aiming to control population size should also consider the preservation of genetic diversity. Some overabundant koala populations, for example, have low genetic variation. Different management strategies will affect population genetic variation differently. Aims. Here, we compare four strategies with respect to their effects on the effective population size, Ne , and therefore on genetic variation. Methods. The four strategies of interest are: (1) sterilisation or culling (which have the same effect on genetic variation); (2) random contraception of females with replacement; (3) random contraception of females without replacement; and (4) regular contraception, giving every female equal opportunity to reproduce. We develop mathematical models of these alternative schemes to evaluate their impact on Ne . We also consider the effect of changing population sizes by investigating a model with geometric population growth in which females are removed by sterilisation or culling. Key results. We find that sterilisation/culling at sexual maturity has the most detrimental effect on Ne , whereas regular contraception has no impact on Ne . Random contraception lies between these two extremes, leading to a moderate reduction in Ne . Removal of females from a growing population results in a higher Ne than the removal of females from a static population. Conclusions. Different strategies for controlling a population lead to different effective population sizes. Implications. To preserve genetic diversity in a wildlife population under control, the effective population size should be kept as large as possible. We suggest that a suitable approach in managing koala populations may be to prevent reproduction by all females older than a particular age.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5803 ◽  
Author(s):  
Giridhar Athrey ◽  
Nikolas Faust ◽  
Anne-Sophie Charlotte Hieke ◽  
I. Lehr Brisbin

Captive populations are considered a key component of ex situ conservation programs. Research on multiple taxa has shown the differential success of maintaining demographic versus genetic stability and viability in captive populations. In typical captive populations, usually founded by few or related individuals, genetic diversity can be lost and inbreeding can accumulate rapidly, calling into question their ultimate utility for release into the wild. Furthermore, domestication selection for survival in captive conditions is another concern. Therefore, it is crucial to understand the dynamics of population sizes, particularly the effective population size, and genetic diversity at non-neutral and adaptive loci in captive populations. In this study, we assessed effective population sizes and genetic variation at both neutral microsatellite markers, as well as SNP variants from the MHC-B locus of a captive Red Junglefowl population. This population represents a rare instance of a population with a well-documented history in captivity, following a realistic scenario of chain-of-custody, unlike many captive lab populations. Our analyses, which included 27 individuals comprising the entirety of one captive population show very low neutral and adaptive genetic variation, as well as low effective sizes, which correspond with the known demographic history. Finally, our study also shows the divergent impacts of small effective size and inbreeding in captive populations on microsatellite versus adaptive genetic variation in the MHC-B locus. Our study provides insights into the difficulties of maintaining adaptive genetic variation in small captive populations.


Sign in / Sign up

Export Citation Format

Share Document