scholarly journals When ecological marginality is not geographically peripheral: exploring genetic predictions of the centre-periphery hypothesis in the endemic plantLilium pomponium

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11039
Author(s):  
Gabriele Casazza ◽  
Carmelo Macrì ◽  
Davide Dagnino ◽  
Maria Guerrina ◽  
Marianick Juin ◽  
...  

BackgroundQuantifying variation of genetic traits over the geographical range of species is crucial for understanding the factors driving their range dynamics. The center-periphery hypothesis postulates, and many studies support, the idea that genetic diversity decreases and genetic differentiation increases toward the geographical periphery due to population isolation. The effects of environmental marginality on genetic variation has however received much less attention.MethodsWe tested the concordance between geographical and environmental gradients and the genetic predictions of center-periphery hypothesis for endemicLilium pomponiumin the southern Alps.ResultsWe found little evidence for concordance between genetic variation and both geographical and environmental gradients. Although the prediction of increased differentiation at range limits is met, genetic diversity does not decrease towards the geographical periphery. Increased differentiation among peripheral populations, that are not ecologically marginal, may be explained by a decrease in habitat availability that reduces population connectivity. In contrast, a decrease of genetic diversity along environmental but not geographical gradients may be due to the presence of low quality habitats in the different parts of the range of a species that reduce effective population size or increase environmental constraints. As a result, environmental factors may affect population dynamics irrespective of distance from the geographical center of the range. In such situations of discordance between geographical and environmental gradients, the predictions of decreasing genetic diversity and increasing differentiation toward the geographical periphery may not be respected.

2021 ◽  
Author(s):  
Gregory Thom ◽  
Camila C. Ribas ◽  
Eduardo Shultz ◽  
Alexandre Aleixo ◽  
Cristina Y. Miyaki

Aim: We tested if historical demographic changes of populations occurring on the floodplains of a major Amazon Basin tributary could be associated with range expansions from upper and middle sections of the river, following the establishment of widespread river-created environments during the Late Pleistocene and Holocene. Location: Solimoes River, Western Amazon, South America Taxon: Myrmoborus lugubris, Thamnophilus cryptoleucus and Myrmotherula assimilis Methods: We analyzed thousands of UltraConserved Elements to explore spatial patterns of genetic diversity and connectivity between individuals. Range expansions were tested with alternative methods. We quantified habitat preference for the analyzed species in order to test if the occupation of dynamic habitats could predict spatial patterns of genetic diversity. Results: Our study did not support shared population range expansions related to historical regionalized changes in habitat availability. We found considerable variation in the spatial distribution of the genetic diversity between studied taxa, and that species with higher levels of specialization to dynamic environments have a more heterogeneous distribution of genetic diversity and reduced levels of gene flow across space. Main conclusions: Our results suggest that demographic expansions along the Solimoes River might be linked to geographic homogeneous oscillation in the distribution of floodplain environments, promoting effective population size changes but not range expansion. We found that habitat specificity might be a good predictor of population connectivity along the Amazonian floodplains.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 233 ◽  
Author(s):  
Keiko Kitamura ◽  
Kentaro Uchiyama ◽  
Saneyoshi Ueno ◽  
Wataru Ishizuka ◽  
Ikutaro Tsuyama ◽  
...  

Research Highlights: We detected the longitudinal gradients of genetic diversity parameters, such as the number of alleles, effective number of alleles, heterozygosity, and inbreeding coefficient, and found that these might be attributable to climatic conditions, such as temperature and snow depth. Background and Objectives: Genetic diversity among local populations of a plant species at its distributional margin has long been of interest in ecological genetics. Populations at the distribution center grow well in favorable conditions, but those at the range margins are exposed to unfavorable environments, and the environmental conditions at establishment sites might reflect the genetic diversity of local populations. This is known as the central-marginal hypothesis in which marginal populations show lower genetic variation and higher differentiation than in central populations. In addition, genetic variation in a local population is influenced by phylogenetic constraints and the population history of selection under environmental constraints. In this study, we investigated this hypothesis in relation to Abies sachalinensis, a major conifer species in Hokkaido. Materials and Methods: A total of 1189 trees from 25 natural populations were analyzed using 19 EST-SSR loci. Results: The eastern populations, namely, those in the species distribution center, showed greater genetic diversity than did the western peripheral populations. Another important finding is that the southwestern marginal populations were genetically differentiated from the other populations. Conclusions: These differences might be due to genetic drift in the small and isolated populations at the range margin. Therefore, our results indicated that the central-marginal hypothesis held true for the southernmost A. sachalinensis populations in Hokkaido.


Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 119 ◽  
Author(s):  
Petr Smýkal ◽  
Matthew Nelson ◽  
Jens Berger ◽  
Eric Von Wettberg

Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.


Rangifer ◽  
2016 ◽  
Vol 36 (1) ◽  
pp. 1 ◽  
Author(s):  
Keri McFarlane ◽  
Anne Gunn ◽  
Mitch Campbell ◽  
Mathieu Dumond ◽  
Jan Adamczewski ◽  
...  

Migratory barren-ground caribou (Rangifer tarandus groenlandicus) provide an opportunity to examine the genetic population structure of a migratory large mammal whose movements and distribution, in some instances, have not been heavily influenced by human activities that result in habitat loss or fragmentation. These caribou have likely reached large effective population sizes since their rapid radiation during the early Holocene despite cyclic changes in abundance. Migratory barren-ground caribou are managed as discrete subpopulations. We investigated genetic variation among those subpopulations to determine the patterns of genetic diversity within and among them, and the implications for long-term persistence of caribou. We identified three distinct genetic clusters across the Canadian arctic tundra: the first cluster consisted of all fully-continental migratory barren-ground subpopulations; the second cluster was the Dolphin and Union caribou; and the third cluster was caribou from Southampton Island. The Southampton Island caribou are especially genetically distinct from the other barren-ground type caribou. Gene flow among subpopulations varied across the range. Occasional gene flow across the sea-ice is likely the reason for high levels of genetic variation in the Dolphin and Union subpopulation, which experienced very low numbers in the past. These results suggest that for most migratory caribou subpopulations, connectivity among subpopulations plays an important role in maintaining natural genetic diversity. Our analyses provide insight into the levels of microsatellite genetic diversity and patterns of gene flow that may be common to large subpopulations that historically had a continuous distribution across a large continental range. These data can also be used as a benchmark to compare the effects of habitat fragmentation and bottlenecks on other large caribou populations.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 441 ◽  
Author(s):  
Thomas W. R. Harrop ◽  
Marissa F. Le Lec ◽  
Ruy Jauregui ◽  
Shannon E. Taylor ◽  
Sarah N. Inwood ◽  
...  

Modified, agricultural landscapes are susceptible to damage by insect pests. Biological control of pests is typically successful once a control agent has established, but this depends on the agent’s capacity to co-evolve with the host. Theoretical studies have shown that different levels of genetic variation between the host and the control agent will lead to rapid evolution of resistance in the host. Although this has been reported in one instance, the underlying genetics have not been studied. To address this, we measured the genetic variation in New Zealand populations of the pasture pest, Argentine stem weevil (Listronotus bonariensis), which is controlled with declining effectiveness by a parasitoid wasp, Microctonus hyperodae. We constructed a draft reference genome of the weevil, collected samples from a geographical survey of 10 sites around New Zealand, and genotyped them using a modified genotyping-by-sequencing approach. New Zealand populations of Argentine stem weevil have high levels of heterozygosity and low population structure, consistent with a large effective population size and frequent gene flow. This implies that Argentine stem weevils were able to evolve more rapidly than their biocontrol agent, which reproduces asexually. These findings show that monitoring genetic diversity in biocontrol agents and their targets is critical for long-term success of biological control.


2000 ◽  
Vol 75 (3) ◽  
pp. 331-343 ◽  
Author(s):  
ARMANDO CABALLERO ◽  
MIGUEL A. TORO

Genetic parameters widely used to monitor genetic variation in conservation programmes, such as effective number of founders, founder genome equivalents and effective population size, are interrelated in terms of coancestries and variances of contributions from ancestors to descendants. A new parameter, the effective number of non-founders, is introduced to describe the relation between effective number of founders and founder genome equivalents. Practical recommendations for the maintenance of genetic variation in small captive populations are discussed. To maintain genetic diversity, minimum coancestry among individuals should be sought. This minimizes the variances of contributions from ancestors to descendants in all previous generations. The method of choice of parents and the system of mating should be independent of each other because a clear-cut recommendation cannot be given on the latter.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2425
Author(s):  
Samira Ben-Menni Schuler ◽  
Jesús Picazo-Aragonés ◽  
Fred J. Rumsey ◽  
Ana Teresa Romero-García ◽  
Víctor N. Suárez-Santiago

Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation.


2021 ◽  
Author(s):  
Michaela Halsey ◽  
John Stuhler ◽  
Natalia J Bayona-Vasquez ◽  
Roy N Platt ◽  
Jim R Goetze ◽  
...  

Organisms with low effective population sizes are at greater risk of extinction because of reduced genetic diversity.   Dipodomys elator  is a kangaroo rat that is classified as threatened in Texas and field surveys from the past 50 years indicate that the distribution of this species has decreased. This suggests geographic range reductions that could have caused population fluctuations, potentially impacting effective population size. Conversely, the more common and widespread  D. ordii  is thought to exhibit relative geographic and demographic stability. Genetic variation between  D. elator  and  D. ordii  samples was assessed using 3RAD, a modified restriction site associated sequencing approach. It was hypothesized that  D. elator  would show lower levels of nucleotide diversity, observed heterozygosity, and effective population size when compared to  D. ordii . Also of interest was identifying population structure within contemporary samples of  D. elator  and detecting genetic variation between temporal samples that could indicate demographic dynamics. Up to 61,000 single nucleotide polymorphisms were analyzed. It was determined that genetic variability and effective population size in contemporary  D. elator  populations were lower than that of  D. ordii, that there is only slight, if any, structure within contemporary  D. elator  populations, and there is little genetic differentiation between spatial or temporal historical samples suggesting little change in nuclear genetic diversity over 30 years. Results suggest that genetic diversity of  D. elator  has remained stable despite claims of reduced population size and/or abundance, which may indicate a metapopulation-like system, whose fluctuations might counteract any immediate decrease in fitness.


2009 ◽  
Vol 36 (7) ◽  
pp. 601 ◽  
Author(s):  
Mark M. Tanaka ◽  
Romane Cristescu ◽  
Desmond W. Cooper

Context. The management of wildlife populations aiming to control population size should also consider the preservation of genetic diversity. Some overabundant koala populations, for example, have low genetic variation. Different management strategies will affect population genetic variation differently. Aims. Here, we compare four strategies with respect to their effects on the effective population size, Ne , and therefore on genetic variation. Methods. The four strategies of interest are: (1) sterilisation or culling (which have the same effect on genetic variation); (2) random contraception of females with replacement; (3) random contraception of females without replacement; and (4) regular contraception, giving every female equal opportunity to reproduce. We develop mathematical models of these alternative schemes to evaluate their impact on Ne . We also consider the effect of changing population sizes by investigating a model with geometric population growth in which females are removed by sterilisation or culling. Key results. We find that sterilisation/culling at sexual maturity has the most detrimental effect on Ne , whereas regular contraception has no impact on Ne . Random contraception lies between these two extremes, leading to a moderate reduction in Ne . Removal of females from a growing population results in a higher Ne than the removal of females from a static population. Conclusions. Different strategies for controlling a population lead to different effective population sizes. Implications. To preserve genetic diversity in a wildlife population under control, the effective population size should be kept as large as possible. We suggest that a suitable approach in managing koala populations may be to prevent reproduction by all females older than a particular age.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5803 ◽  
Author(s):  
Giridhar Athrey ◽  
Nikolas Faust ◽  
Anne-Sophie Charlotte Hieke ◽  
I. Lehr Brisbin

Captive populations are considered a key component of ex situ conservation programs. Research on multiple taxa has shown the differential success of maintaining demographic versus genetic stability and viability in captive populations. In typical captive populations, usually founded by few or related individuals, genetic diversity can be lost and inbreeding can accumulate rapidly, calling into question their ultimate utility for release into the wild. Furthermore, domestication selection for survival in captive conditions is another concern. Therefore, it is crucial to understand the dynamics of population sizes, particularly the effective population size, and genetic diversity at non-neutral and adaptive loci in captive populations. In this study, we assessed effective population sizes and genetic variation at both neutral microsatellite markers, as well as SNP variants from the MHC-B locus of a captive Red Junglefowl population. This population represents a rare instance of a population with a well-documented history in captivity, following a realistic scenario of chain-of-custody, unlike many captive lab populations. Our analyses, which included 27 individuals comprising the entirety of one captive population show very low neutral and adaptive genetic variation, as well as low effective sizes, which correspond with the known demographic history. Finally, our study also shows the divergent impacts of small effective size and inbreeding in captive populations on microsatellite versus adaptive genetic variation in the MHC-B locus. Our study provides insights into the difficulties of maintaining adaptive genetic variation in small captive populations.


Sign in / Sign up

Export Citation Format

Share Document