scholarly journals Leaf spot of Hosta ventricosa caused by Fusarium oxysporum in China

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12581
Author(s):  
Chunxia Wang ◽  
Hulei Zhang ◽  
Shenhai Wang ◽  
Shengfeng Mao

Leaf spot of Hosta ventricosa is a new disease in China. This disease seriously affects the ornamental value and greening function of H. ventricosa. Identification of the causal agent can prevent and control leaf spot in H. ventricosa and promote the healthy development of the H. ventricosa industry. Known incidents of leaf spot of H. ventricosa occurred in three places, and samples were collected. After the fungus were isolated, its pathogenicity was tested according to Koch’s postulates. Isolates ZE-1b and ZE-2b were identified as Fusarium oxysporum based on morphological features and multigene phylogenetic analyses of calmodulin (CMDA), RNA polymerase II subunit A (RPB1), RNA polymerase II second largest subunit (RPB2) and translation elongation factor 1-alpha (TEF1). These results provide a theoretical basis for the control of this disease of H. ventricosa.

2020 ◽  
Vol 44 (1) ◽  
pp. 206-239 ◽  
Author(s):  
Y.-F. Sun ◽  
D.H. Costa-Rezende ◽  
J.-H. Xing ◽  
J.-L. Zhou ◽  
B. Zhang ◽  
...  

Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s. lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.


Author(s):  
N. Yilmaz ◽  
M. Sandoval-Denis ◽  
L. Lombard ◽  
C.M. Visagie ◽  
B.D. Wingfield ◽  
...  

The Fusarium fujikuroi species complex (FFSC) includes more than 60 phylogenetic species (phylospecies) with both phytopathological and clinical importance. Because of their economical relevance, a stable taxonomy and nomenclature is crucial for species in the FFSC. To attain this goal, we examined type specimens and representative cultures of several species by employing morphology and phylogenetic analyses based on partial gene fragments of the translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), calmodulin (cmdA), RNA polymerase largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2). Based on these results three new species were delimited in the FFSC. Two of these phylospecies clustered within the African clade, and one in the American clade. Epitypes were also designated for six previously described FFSC species including F. proliferatum and F. verticillioides, and a neotype designated for F. subglutinans. Furthermore, both F. acutatum and F. ophioides, which were previously invalidly published, are validated.


2021 ◽  
Vol 20 (1) ◽  
pp. 39-50
Author(s):  
Alexandra Pintye ◽  
Dániel G. Knapp

AbstractIn this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grasslands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the surface of autoclaved plant materials. Both species are first reported here as root-colonizing fungi.


2021 ◽  
Author(s):  
Guang Zhi Zhang ◽  
HeTong Yang ◽  
Xin Jian Zhang ◽  
Fang Yuan Zhou ◽  
Xiao-Qing Wu ◽  
...  

Abstract Trichoderma isolates were collected from wetland soils in different areas of China. Combined analyses of morphological characteristics and phylogenetic analyses by partial translation elongation factor 1 alpha (TEF1-α) and RNA polymerase II subunit b (RPB2) revealed five new Trichoderma species, namely, Trichoderma macrofasciculatum, T. shangrilaense, T. nordicum, T. vadicola, and T. hailarense. T. macrofasciculatum and T. shangrilaense belonging to the Polysporum Clade were isolated from wetland soils collected from Sichuan and Yunnan Provinces. The conidiation of T. macrofasciculatum typically appeared in white pustules in concentric rings on PDA or MEA, and its conidia had two or more guttules. Conidiation of T. shangrilaense formed white pustules with irregular shape and size, and its conidia were mostly obovoid and smooth. Trichoderma vadicola, T. nordicum, and T. hailarense belonging to the Viride Clade were collected from Shandong Province, Beijing Municipality, and Inner Mongolia Autonomous Region, respectively. The phialides of T. nordicum lageniform were curved on PDA, and its conidia were globose to obovoidal and large. The aerial mycelium of T. vadicola formed strands and floccose mat. The colonies of T. hailarense cannot form conidia on PDA, and the conidia of T. hailarense on other media were obovoid and delicately roughened.


Phytotaxa ◽  
2021 ◽  
Vol 520 (2) ◽  
pp. 184-194
Author(s):  
ALIREZA POURSAFAR ◽  
ESMAEIL HASHEMLOU ◽  
YOUBERT GHOSTA ◽  
FATEMEH SALIMI ◽  
MOHAMMAD JAVAN-NIKKHAH

Eggplant (Solanum melongena L.) is an economically important solanaceous crop in Iran with fruits used for food and traditional medicine. Despite the importance of Alternaria leaf spot and blight disease of solanaceous crops which is commonly seen in the fields, our knowledge about the causal agents on eggplant is limited. In this study, a set of large-spored Alternaria isolates was recovered from eggplant with leaf spot and blight symptoms in Somehsara region, Guilan province, Iran. All recovered isolates shared conspicuous morphological characteristics e.g. production of large, solitary conidia with several transverse disto- and eusepta and long tapering filamentous beak resemble those seen in the members of Alternaria section Porri. Multi-locus phylogenetic analyses based on the internal transcribed spacer region of nrDNA (ITS-rDNA) and parts of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), second largest subunit of RNA Polymerase II (RPB2), translation elongation factor 1-alpha (TEF1-α) and Alternaria major allergen (Alt a 1) gene sequences provided further evidence supporting not only their exact placement in Alternaria sect. Porri, but also in a distinct lineage representing a new species. The new species was named, described and illustrated herein as Alternaria guilanica sp. nov.. The phylogenetic and morphological comaprisions of the new species with other closely related species were also provided. Pathogenicity test conducted for the new strains revealed that they were capable to induce disease symptoms on eggplant leaves under greenhouse conditions, and re-isolation of the inoculated isolates confirmed Koch’s postulates.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 524 ◽  
Author(s):  
Xian Zhou ◽  
Meng Pan ◽  
Haoyu Li ◽  
Chengming Tian ◽  
Xinlei Fan

Euonymus alatus (Celastraceae) is widely cultivated in China for its economic value and landscape benefits. Euonymus alatus dieback occurs due to members of Cytospora and has become one of the most severe diseases affecting its cultivation in China. In this study, we examined the causal agent of bough dieback on campuses of University Road, Beijing, China. Among the strains, three were morphologically consistent with Cytospora, showing hyaline and allantoid conidia. Based on phylogenetic analyses of the concatenated actin (ACT), internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), translation elongation factor 1-alpha (TEF1-α) and beta-tubulin (TUB2) gene sequences, along with morphological and physiological features, we propose C. haidianensis as a novel species. It was confirmed as a causal agent of dieback of E. alatus by pathogenicity tests. Mycelial growth of Cytospora haidianensis occurred at pH values ranging from 3.0 to 11.0, with optimum growth at 8.3, and at temperatures from 5 to 35 °C, with optimum growth at 19.8 °C. We also tested the growth of C. haidianensis in the presence of six carbon sources. Sucrose, maltose and glucose were highly efficient and xylose was the least. The ability of C. haidianensis to grow at 19.8 °C may help to explain its occurrence causing dieback of E. alatus in Beijing during the autumn season.


2021 ◽  
Vol 7 (12) ◽  
pp. 1086
Author(s):  
Guang-Fu Mou ◽  
Tolgor Bau

Asproinocybe and Tricholosporum are not well known, and their placement at the family level remains undetermined. In this study, we conducted molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region (ITS) and nuc 28S rDNA (nrLSU), and a dataset with six molecular markers (ITS, LSU, RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), 18S nuclear small subunit ribosomal DNA (nrSSU), and translation elongation factor 1-alpha (TEF1-α)) using Bayesian (BA) and Maximum Likelihood (ML) methods, we found that the species of Asproinocybe and Tricholosporum formed an independent family-level clade (0.98/72). Asproinocybaceae fam. nov., a new family, is established here for accommodating this clade. Two new species, Asproinocybe sinensis and Tricholosporum guangxiense, from subtropical and tropical karst areas of China, are also described here.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 780-787 ◽  
Author(s):  
M. C. Cañizares ◽  
C. Gómez-Lama ◽  
M. D. García-Pedrajas ◽  
E. Pérez-Artés

Fusarium wilt, caused by Fusarium oxysporum f. sp. dianthi, is the most important disease of carnation worldwide. Knowing the diversity of the F. oxysporum f. sp. dianthi population present in a carnation growing area is a key component of preventing dramatic losses in production. Sequence analyses of partial β-tubulin, translation elongation factor 1α genes, and the full-length ribosomal DNA intergenic spacer (IGS) were conducted to resolve phylogenetic relationships in a wide collection of Spanish F. oxysporum f. sp. dianthi isolates, along with some representatives from Italy. We found that, among the three different gene regions, the IGS sequence was the best choice to resolve phylogenetic relationships among F. oxysporum f. sp. dianthi isolates. The phylogenetic tree generated with the complete IGS region was the only one showing a clear clustering of isolates according to the molecular group (virulence grouping) and the vegetative compatibility group. In order to develop a more practical tool based on a shorter DNA sequence to quickly analyze diversity in F. oxysporum f. sp. dianthi populations, we examined IGS nucleotide alignments and identified a region of approximately 300 bp that accumulates enough “informative” changes to resolve intraspecific relationships and determine pathogenic variants in F. oxysporum f. sp. dianthi. Moreover, the “condensed” alignment of this short IGS region showing only the informative positions revealed the existence of virulence group-discriminating positions. In addition to clarifying the phylogenetic relationships among F. oxysporum f. sp. dianthi isolates of the recently described race groups by using multigene genealogies, we have developed simple tools for the phylogenetic analyses of F. oxysporum f. sp. dianthi populations and the determination of the molecular group of uncharacterized F. oxysporum f. sp. dianthi isolates.


MycoKeys ◽  
2018 ◽  
Vol 34 ◽  
pp. 93-108 ◽  
Author(s):  
Jia-Hui Xing ◽  
Yi-Fei Sun ◽  
Yu-Li Han ◽  
Bao-Kai Cui ◽  
Yu-Cheng Dai

Ganoderma is a cosmopolitan white rot fungal genus, famous for its medicinal properties. In the present study, two new Ganoderma species were collected from south-eastern China and described on the basis of morphological characters and phylogenetic analyses of sequences of the internal transcribed spacer (ITS) region, the translation elongation factor 1-α gene (EF1-α) and the second subunit of RNA polymerase II (RPB2). Specimens of both species were found on living trees of Casuarinaequisetifolia. Ganodermaangustisporum sp. nov. is characterised by its sessile basidiomata and almond-shaped, slightly truncate, narrow basidiospores (9–11.3 × 4–5.2 µm). Ganodermacasuarinicola sp. nov. is characterised by its strongly laccate reddish-brown pileal surface, luminous yellow to yellowish-brown cutis and ellipsoid, truncate basidiospores (9–10.2 × 5–6 µm). The two new species are compared with their related taxa. Phylogenetic analyses confirmed that G.angustisporum and G.casuarinicola are distinct species within Ganoderma.


2019 ◽  
Vol 109 (3) ◽  
pp. 456-468 ◽  
Author(s):  
I. Leal ◽  
M.-J. Bergeron ◽  
N. Feau ◽  
C. K. M. Tsui ◽  
B. Foord ◽  
...  

Coniferiporia sulphurascens is a facultative fungal pathogen that causes laminated root rot (LRR) in commercially important coniferous species worldwide. This fungus spreads primarily by way of vegetative mycelium transferring at points of contact between infected and healthy roots. Successful intervention to control LRR requires a better understanding of the population structure and genetic variability of C. sulphurascens. In this study, we investigated the population genetic structure and origin of C. sulphurascens populations in western North America and eastern Eurasia collected from multiple coniferous hosts. By analyzing the small and large mitochondrial ribosomal RNA subunit genes combined with six nuclear loci (internal transcribed spacer region, actin, RNA polymerase II largest subunit, RNA polymerase II second-largest subunit, laccase-like multicopper oxidase, and translation elongation factor 1-α), we observed that none of the alleles among the loci were shared between North American (NA) and Eurasian C. sulphurascens populations. In total, 55 multilocus genotypes (MLGs) were retrieved in C. sulphurascens isolates occurring in these two continental regions. Of these, 41 MLGs were observed among 58 isolates collected from widespread locations in British Columbia (Canada) and the northwestern United States, while 14 MLGs were observed among 16 isolates sampled in Siberia and Japan. Our data showed that the levels of genetic differentiation between the NA and Eurasian populations are much greater than the populations from within each continental region; the two continental populations formed clearly divergent phylogenetic clades or lineages since they were separated approximately 7.5 million years ago. Moreover, the Eurasian population could be the source of the NA population. Our study indicates the existence of cryptic diversity in this pathogen species, and strongly suggests that the NA and Eurasian populations represent two lineages, which have progressively diverged from each other in allopatry.


Sign in / Sign up

Export Citation Format

Share Document