scholarly journals Progesterone influences cytoplasmic maturation in porcine oocytes developingin vitro

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2454 ◽  
Author(s):  
Bao Yuan ◽  
Shuang Liang ◽  
Yong-Xun Jin ◽  
Jeong-Woo Kwon ◽  
Jia-Bao Zhang ◽  
...  

Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and developmentin vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p< 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p< 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression.

2014 ◽  
Vol 26 (1) ◽  
pp. 201
Author(s):  
J.-H. Tan ◽  
Y.-B. Wang ◽  
H.-L. Xie ◽  
Q. Li ◽  
X.-Y. Liu ◽  
...  

It is well known that oocyte maturation consists of 2 processes: nuclear maturation and cytoplasmic maturation. Nuclear maturation refers to resumption of the first meiosis and extrusion of the first polar body (PB1), and cytoplasmic maturation is manifested as acquisition of the ability to complete pre-implantation development. Although it is recognised that energy supply is essential for oocyte maturation and there have been many reports on the effect of glucose metabolism on oocyte nuclear maturation, studies on the effect of glucose metabolism on ooplasmic maturation are limited. In the present study, goat oocytes recovered from slaughterhouse ovaries were cultured for 24 h in a simplified CR1 (sCR1) medium (NaCl, KCl, NaHCO3, CaCl2, BSA, and eCG) supplemented with glucose (10 mM) and/or lactate (3.5 mM) in the presence or absence of pentose phosphate pathway (PPP) inhibitor dehydroepiandrosterone (DHEA, 100 μM) or glycolysis inhibitor iodoacetate (1 μM). At the end of maturation culture, oocytes with PB1 were either activated by treatment with ionomycin plus 6-DMAP to observe embryo development, or assayed for total glutathione concentrations (GSX) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios. Embryos were cultured for 9 days in CR1aa medium (NaCl, KCl, NaHCO3, calcium lactate, sodium pyruvate, glutamine, EAA, NEAA, and FCS) at 38.5°C under 5% CO2 in humidified air. In the absence of inhibitors, oocyte maturation rates of 82, 65, and 76%, and blastocyst rates of 7, 0, and 7%, were obtained, respectively, after oocytes were matured in sCR1 supplemented with glucose, lactate, or both. When oocytes were matured in sCR1 containing glucose and lactate in the presence of DHEA or iodoacetate, oocyte maturation rates were 69 and 67%, respectively, with no blastocyst produced in either case. However, whereas the presence of DHEA produced 12% morulae, no morulae were observed in the presence of iodoacetate. Furthermore, GSX concentrations (pmol/oocyte) were 8.5, 6.5, and 7.2, whereas GSH/GSSG ratios were 1.8, 0.3, and 0.5, respectively, after oocyte maturation without inhibitors or with 300 μM DHEA or 3 μM iodoacetate. The difference in GSX concentration was statistically significant (P < 0.05; one-way ANOVA) between DHEA and iodoacetate. In conclusion, using a culture system (sCR1 containing 3.5 mM lactate) that sustained oocyte nuclear maturation but did not support blastocyst development, we have studied the effect of PPP and glycolysis of glucose metabolism on the cytoplasmic maturation of goat oocytes. The results suggest that both PPP and glycolysis are essential for ooplasmic maturation of goat oocytes, and that both promote oocyte cytoplasmic maturation by increasing glutathione synthesis and reduction. This study was supported by grants from the National Basic Research Program of China (Nos. 2012CB944403 and 2014CB138503) and the China National Natural Science Foundation (Nos. 31272444 and 30972096).


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4277 ◽  
Author(s):  
Angelo Bertani Giotto ◽  
Daniela Dos Santos Brum ◽  
Francielli Weber Santos ◽  
Antonio Carlos Galarça Guimarães ◽  
Cibele Garcia Moreira Gonçalves ◽  
...  

<p>Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the <em>in vitro </em>maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P&gt;0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P&lt;0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P&lt;0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P&lt;0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P&lt;0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of <em>in vitro </em>fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).</p>


Reproduction ◽  
2007 ◽  
Vol 134 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Eugine Lee ◽  
Yeon Ik Jeong ◽  
Seon Mi Park ◽  
Jong Yun Lee ◽  
Ji Hye Kim ◽  
...  

In an effort to improve the quality ofin vitroproduced porcine embryos, we investigated the effect of brain-derived neurotropic factor (BDNF), a neurotropin family member, onin vitromaturation (IVM) of porcine oocytes. The expression of BDNF and truncated isoforms of its receptor, tyrosine kinase B (TrkB), and p75 common neurotropin receptor was detected in both follicular cells and metaphase-I stage oocytes by RT-PCR. However, mRNA of full-length TrkB was not found in oocytes although it was detected in follicular cells. The expression pattern of BDNF and TrkB was confirmed by immunohistochemistry. Supplementation with BDNF (30 ng/ml) during IVM significantly (P< 0.05) increased the first polar body extrusion and glutathione levels in oocytes, whereas the effect of BDNF on nuclear maturation was diminished when gonadotropin and epidermal growth factor (EGF) were added to the culture media. However, treatment with BDNF (30 ng/ml) along with EGF (10 ng/ml) in the presence of gonadotropin significantly (P< 0.05) increased the developmental competence of oocytes to the blastocyst stage after bothin vitrofertilization (IVF; 29.1% when compared with control, 15.6%) and somatic cell nuclear transfer (SCNT; 13.6% when compared with control, 3%). This appeared to reflect a stimulatory interaction between BDNF and EGF to enhance the cytoplasmic maturation of oocytes to support successful preimplantation development. In conclusion, BDNFenhanced nuclearand cytoplasmic maturation of oocytes by autocrine and/or paracrine signals. Also, when used together with EGF, BDNF increased the developmental potency of embryos after IVF and SCNT, demonstrating an improvedin vitroproduction protocol for porcine oocytes.


2005 ◽  
Vol 17 (2) ◽  
pp. 177
Author(s):  
N.R. Mtango ◽  
T. Kono

Nuclear reprogramming is characterized by functional modification(s) of the transferred nucleus that allows it to direct normal embryo development with the potential to grow to term. The aim of our study was to investigate the process of nuclear changes in reconstructed and activated embryos as well as their developmental competence. All chemicals used were from Sigma Chemicals (St. Louis, MO, USA). Cumulus-oocyte complexes were aspirated from slaughterhouse ovaries of prepurbetal gilts and matured for 42 h in vitro. The cumulus cells were removed by adding in 1 mg mL −1 hyaluronidase in TLP-HEPES. For the NT experiment, oocytes with first polar body were cultured in 0.4 μg mL−1 demecolcine for 1 h. A protruding membrane was removed by micromanipulator and a single donor nucleus from fetal fibroblast was injected subzonally. Fusion was conducted immediately after transfer in 0.3 M mannitol, 0.5 mM HEPES, 0.1% PVA, and 0.1 mM MgCl2 in a fusion chamber with parallel electrodes set 1 mm apart using a singe DC pulse of 125 V mm−1 for 80 s. Activation was done 2–4 h after fusion in the same medium as fusion but with 0.1 mM CaCl2 added; embryos were cultured in 5 μg mL−1 cytochalasin B and 10 μg mL−1 cyclohexamide for 6 h. The embryos were cultured in glucose-free NCSU-37 containing 4 mg mL−1 BSA as basic medium supplemented with 0.17 mM sodium pyruvate and 2.73 mM sodium lactate from Days 0 to 2, and then in basic medium with 5.55 mM D-glucose from Days 2–6 (Kikuchi K et al. 2002 Biol. Reprod. 66, 1033–1041). Non-manipulated oocytes (PA) were electrically activated as stated above. For observing the changes of donor cells, some reconstructed oocytes were fixed 2 h after fusion, prior to activation, and some 12 h after activation in acetic acid:ethanol (1:3) and stained in 1% orcein. The activated oocytes were fixed at 12 h and stained as stated above. There were 47.5% (38/80) of reconstructed oocytes with premature chromosome condensation (PCC), and 23.7% (19/80) with nuclear swelling two hours after fusion. Pronuclear like formation 12 h after activation was 45% (27/60) and 83.3% (50/60) in NT and PA, respectively. The blastocyst rate was 8.3% (5/60) and 46% (69/150) for NT and PA, respectively. The results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of NT embryos to the blastocyst stage.


2015 ◽  
Vol 27 (1) ◽  
pp. 215
Author(s):  
E. Claes ◽  
K. Smits ◽  
C. De Schauwer ◽  
B. Leemans ◽  
E. Wydooghe ◽  
...  

It is a general belief that as soon as the oocyte is recovered from the follicular environment, the nuclear maturation starts spontaneously in vitro, while specific stimulation for the cytoplasmic maturation is lacking (Gilchrist and Thompson 2007 Theriogenology 67, 6–15; Albuz et al. 2010 Hum. Reprod. 25, 2999–3011). As both nuclear and cytoplasmic maturation are required to prepare the oocyte for successful fertilization and embryonic development, a defective cytoplasmic maturation might be an important cause of low blastocyst rates in vitro (Albuz et al. 2010 Hum. Reprod. 25, 2999–3011). Nuclear and cytoplasmic maturation can be evaluated using fluorescent dyes. Assessment of nuclear maturation is typically based on the visualisation of chromatin, whereas cytoplasmic maturation is evaluated by the localization of cytoplasmic organelles [i.e. the cortical granules (CG)]. Equine oocytes were recovered from ovaries of slaughtered mares. After in vitro maturation (IVM; Smits et al. 2010 Vlaams Diergen. Tijds. 79, 134–138), oocytes were fixed and permeabilized. Subsequently, CG were labelled by incubation in 10 µg mL–1 FITC-labelled lens culinaris agglutinin during 15 min at RT. Chromatin was counterstained to verify the nuclear status with 20 µg mL–1 Hoechst 33342 during 15 min at RT. Stained oocytes with no or dispersed chromatin were classified as degenerated. Based on the absence or presence of the first polar body (PB), non-degenerated oocytes were either classified as nuclear immature (MI, no PB present) or nuclear mature (MII, PB present). The non-degenerated oocytes were further subdivided in 3 categories based on the migration of the CG: 1) cytoplasmic immature oocytes with (clusters of) CG randomly distributed throughout the ooplasm, 2) oocytes in transition stage with progressing CG migration to the oocyte cortex, and 3) cytoplasmic mature oocytes with a clearly visible CG monolayer just underneath the oolemma. The mean and standard deviation of nuclear and cytoplasmic parameters were calculated using Excel (Excel 2007, Microsoft Corp., Redmond, WA, USA). In 3 replicates, 86.6 ± 2.75% of all oocytes (131/151) demonstrated a corresponding nuclear and cytoplasmic maturation pattern (MI corresponding to CG1 and 2; MII corresponding to CG3). Only 12.0 ± 2.82% of the oocytes (16/133) revealed a cytoplasmic maturation pattern (CG 1 or 2) that lagged behind the nuclear maturation (MII). On the other hand, 22.2 ± 9.8% of the oocytes (4/18) were already cytoplasmic (CG3) but not yet nuclear matured (MI). Since most of the equine in vitro matured oocytes exhibited, surprisingly, a corresponding nuclear and cytoplasmic maturation pattern, it can be concluded that the gap between the nuclear and cytoplasmic maturation in vitro is less important than is generally believed. Consequently, the IVM step is not the main obstacle to increase the efficiency of the in vitro production process in horses.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Yan Yun ◽  
Peng An ◽  
Jing Ning ◽  
Gui-Ming Zhao ◽  
Wen-Lin Yang ◽  
...  

SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.


Author(s):  
Batara Sirait ◽  
Budi Wiweko ◽  
Ahmad Aulia Jusuf ◽  
Dein Iftitah ◽  
R. Muharam

Oocyte developmental competence is one of the determining factors that influence the outcomes of an IVF cycle regarding the ability of a female gamete to reach maturation, be fertilized, and uphold an embryonic development up until the blastocyst stage. The current approach of assessing the competency of an oocyte is confined to an ambiguous and subjective oocyte morphological evaluation. Over the years, a myriad of biomarkers in the cumulus-oocyte-complex has been identified that could potentially function as molecular predictors for IVF program prognosis. This review aims to describe the predictive significance of several cumulus-oocyte complex (COC) biomarkers in evaluating oocyte developmental competence. A total of eight acclaimed cumulus biomarkers are examined in the study. RT-PCR and microarray analysis were extensively used to assess the significance of these biomarkers in foreseeing oocyte developmental competence. Notably, these biomarkers regulate vital processes associated with oocyte maturation and were found to be differentially expressed in COC encapsulating oocytes of different maturity. The biomarkers were reviewed according to the respective oocyte maturation events namely: nuclear maturation, apoptosis, and extracellular matrix remodeling, and steroid metabolism. Although substantial in vitro evidence was presented to justify the potential use of cumulus biomarkers in predicting oocyte competency and IVF outcomes, the feasibility of assessing these biomarkers as an add-on prognostic procedure in IVF is still restricted due to study challenges.


2004 ◽  
Vol 16 (2) ◽  
pp. 279
Author(s):  
B. Merlo ◽  
E. Iacono ◽  
F. Prati ◽  
G. Mari

A completely defined medium for in vitro maturation (IVM) of equine oocytes has not yet been developed, since most of the media used for IVM are supplemented with serum or BSA. Furthermore, in this species there is no report about the influence of progesterone on maturation, although it has already been used as supplement (500ngmL−1) in EMMI (Maclellan LJ et al., 2001, Theriogenolgy 55, 310 abst). The aims of this study were to develop a completely defined medium for equine oocyte maturation and to investigate the effect of progesterone on nuclear maturation. Equine oocytes were collected by follicular scraping of abattoir-derived ovaries between April and June. The basal medium for maturation was SOFaa supplemented with pFSH-LH 0.1IUmL−1 (Pluset, Laboratorios Calier, Barcelona, Spain), EGF* 50ngmL−1, ITS (Insulin, Transferrin, Sodium selenite), L-cysteine 1.2mM, Maturation SOF (MSOF). Compact cumulus-oocyte complexes were selected, washed three times in H-SOF and matured in one of the following media (15–20 oocytesmL−1): (1) MSOF+FCS 10% (MSOF-FCS), (2) MSOF+progesterone 100ngmL−1 (MSOF-P4), (3) MSOF. After 24h of culture in 5% CO2 in air at 38.5°C, the oocytes were denuded by gently pipetting in a 0.25% trypsin solution, washed and stained with Hoechst 33258 (10μgmL−1 in PBS) for 30min at room temperature. Oocytes were examined under a fluorescent microscope to assess nuclear maturation. Only oocytes with an evident polar body and metaphase II plate (MII) were considered mature. The experiment was done in 6 replicates. Chi Square test was used for statistical analysis (Statistica for Windows – Stat Soft Inc., Tusla, OK, USA). Significance was assessed for P&lt;0.05. The results of this study show that MSOF can be considered a suitable completely defined medium for IVM of equine oocytes. Adding progesterone significantly (P&lt;0.05) increases the nuclear maturation rate at 24h of culture. It can be speculated that although cumuls cells produce this hormone, supplementation is useful to reach progesterone concentrations similar to those present in follicular fluid (early dominant 63.4±19.3ngmL−1, healthy preovulatory follicle 1094.3±170.9ngmL−1; Gerard N et al., 2002, Reproduction 124, 241–248). Further studies are needed to investigate the influence of progesterone on cytoplasmic maturation and to test the effect of different progesterone concentrations and time of maturation in a completely defined system.*All chemicals were purchased from Sigma, St. Louis, MO, USA, unless otherwise stated. Table 1 Maturation of equine oocytes in different media


Reproduction ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 859-867 ◽  
Author(s):  
Xiao-Qian Meng ◽  
Ke-Gang Zheng ◽  
Yong Yang ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
...  

Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.


Sign in / Sign up

Export Citation Format

Share Document