scholarly journals The outcomes of most aggressive interactions among closely related bird species are asymmetric

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2847 ◽  
Author(s):  
Paul R. Martin ◽  
Cameron Freshwater ◽  
Cameron K. Ghalambor

Aggressive interactions among closely related species are common, and can play an important role as a selective pressure shaping species traits and assemblages. The nature of this selective pressure depends on whether the outcomes of aggressive contests are asymmetric between species (i.e., one species is consistently dominant), yet few studies have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive contests. Here we use previously published data involving 26,212 interactions between 270 species pairs of birds from 26 taxonomic families to address the question: How often are aggressive interactions among closely related bird species asymmetric? We define asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries using data summed across different sites for each species pair, and compare results to asymmetries calculated using data separated by location. We find that 80% of species pairs had aggressive outcomes where one species won 80% or more of aggressive contests. We also find that the majority of aggressive interactions among closely related species show statistically significant asymmetries, and above a sample size of 52 interactions, all outcomes are asymmetric following binomial tests. Species pairs with dominance data from multiple sites showed the same dominance relationship across locations in 93% of the species pairs. Overall, our results suggest that the outcome of aggressive interactions among closely related species are usually consistent and asymmetric, and should thus favor ecological and evolutionary strategies specific to the position of a species within a dominance hierarchy.

2016 ◽  
Author(s):  
Paul R Martin ◽  
Cameron Freshwater ◽  
Cameron K Ghalambor

Aggressive interactions among closely related species are common. These can play an important role as a selective pressure shaping species, traits and assemblages. The nature of this selective pressure depends on whether the outcomes of aggressive contests are asymmetric between species (i.e., one species is consistently dominant), yet few studies have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive contests. Here we use previously published data involving 26,656 interactions between 270 species pairs of birds from 26 taxonomic families to address the question: How often are aggressive interactions among closely related bird species asymmetric? We define asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries using data summed across different sites for each species pair, and compare results to asymmetries calculated using data separated by location. We find that 80% of species pairs had aggressive outcomes where one species won 80% or more of aggressive contests. We also find that the majority of aggressive interactions among closely related species show statistically significant asymmetries, and above a sample size of 52 interactions, all outcomes are asymmetric following binomial tests. Results using data partitioned by location showed similar patterns. Species pairs with dominance data from multiple sites showed the same dominance relationship across locations in 93% of the species pairs. Overall, our results suggest that the outcome of aggressive interactions among closely related species are usually consistent and asymmetric, and should thus favor ecological and evolutionary strategies specific to the position of a species within a dominance hierarchy.


2016 ◽  
Author(s):  
Paul R Martin ◽  
Cameron Freshwater ◽  
Cameron K Ghalambor

Aggressive interactions among closely related species are common. These can play an important role as a selective pressure shaping species, traits and assemblages. The nature of this selective pressure depends on whether the outcomes of aggressive contests are asymmetric between species (i.e., one species is consistently dominant), yet few studies have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive contests. Here we use previously published data involving 26,656 interactions between 270 species pairs of birds from 26 taxonomic families to address the question: How often are aggressive interactions among closely related bird species asymmetric? We define asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries using data summed across different sites for each species pair, and compare results to asymmetries calculated using data separated by location. We find that 80% of species pairs had aggressive outcomes where one species won 80% or more of aggressive contests. We also find that the majority of aggressive interactions among closely related species show statistically significant asymmetries, and above a sample size of 52 interactions, all outcomes are asymmetric following binomial tests. Results using data partitioned by location showed similar patterns. Species pairs with dominance data from multiple sites showed the same dominance relationship across locations in 93% of the species pairs. Overall, our results suggest that the outcome of aggressive interactions among closely related species are usually consistent and asymmetric, and should thus favor ecological and evolutionary strategies specific to the position of a species within a dominance hierarchy.


Phytotaxa ◽  
2021 ◽  
Vol 528 (2) ◽  
pp. 93-110
Author(s):  
JOSÉ SAID GUTIÉRREZ-ORTEGA ◽  
MIGUEL ANGEL PÉREZ-FARRERA ◽  
JEFFREY CHEMNICK ◽  
TIMOTHY J. GREGORY

The cycad genus Dioon comprises 17 species from Mexico and Honduras, all of them delimited based on their morphological variation and geographic distribution. A recent evaluation of the biological variation among Dioon populations from Oaxaca and Chiapas, Mexico, demonstrated that the concept of the species Dioon merolae actually consists of three lineages that should be recognized as different taxa. One lineage was already described as Dioon oaxacensis, leaving the concept of Dioon merolae comprising two lineages distributed on both sides of the Isthmus of Tehuantepec. However, there are conspicuous morphological differences between these two lineages. Here, we tested whether such a differentiation within the concept of Dioon merolae merits the differentiation of two different taxa. We evaluated the qualitative and morphometric variation among populations belonging to the Dioon merolae lineages, and compared it with the closely related species Dioon oaxacensis. Morphological observations and statistical tests demonstrated that the populations of southeastern Oaxaca, traditionally considered as part of Dioon merolae, represent a distinct species that we described as Dioon salas-moralesae. Identifying the diagnostic characters of this new species helps enable an understanding of the criteria that should be considered to delineate the boundaries between other cycad species.


2020 ◽  
Author(s):  
Daniel S. Park ◽  
Ian K. Breckheimer ◽  
Aaron M. Ellison ◽  
Goia M. Lyra ◽  
Charles C. Davis

AbstractInteractions between species can influence access to resources and successful reproduction. One possible outcome of such interactions is reproductive character displacement. Here, the similarity of reproductive traits – such as flowering time – among close relatives growing in sympatry differ more so than when growing apart. However, evidence for the overall prevalence and direction of this phenomenon, or the stability of such differences under environmental change, remains untested across large taxonomic and spatial scales. We apply data from tens of thousands of herbarium specimens to examine character displacement in flowering time across 110 animal-pollinated angiosperm species in the eastern USA. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. Overall, flowering time displacement in sympatry is not common. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. We additionally identify that future climate change may alter the nature of phenological displacement among many of these species pairs. On average, flowering times of closely related species were predicted to shift further apart by the mid-21st century, which may have significant future consequences for species interactions and gene flow.


2009 ◽  
Vol 49 (3) ◽  
pp. 49-71 ◽  
Author(s):  
Marcelo Ferreira de Vasconcelos ◽  
Santos D'Angelo Neto

The avifauna of the Araucaria forests in the higher reaches of the Serra da Mantiqueira massif is little known and poorly documented. This region is recognized as an important area of differentiation of birds in southeastern Brazil. Here, we present the first ornithological survey of the Araucaria forests and associated habitats in the mountains of extreme southern Minas Gerais state, near the southern tip of the Serra da Mantiqueira. The study area comprises the Serra do Juncal region and several adjacent sites, located in the municipalities of Gonçalves and Camanducaia. We recorded 206 bird species, of which 57 (27.7%) are endemic to the Atlantic forest. Several records represent the first specimens for Minas Gerais, in the hinterlands of Serra da Mantiqueira, proving that many Atlantic species also occur in the intern most slope of this mountain range. Examples are: Dysithamnus xanthopterus, Chamaeza ruficauda, Leptasthenura setaria, Heliobletus contaminatus, Hemitriccus obsoletus, Phylloscartes difficilis, Piprites pileata, Poospiza thoracica, and Cacicus chrysopterus. The region is also a previously unknown area of sympatry of other closely related species: Scytalopus notorius and S. speluncae, Lepidocolaptes squamatus and L. falcinellus, and Basileuterus culicivorus and B. hypoleucus. Both species of Lepidocolaptes and Basileuterus hybridize in the region. We also comment on the avifauna conservation, which have been threatened by eco-tourism, building of new styles of houses, domestic animals, forest fragmentation, and plantations.


2020 ◽  
Author(s):  
Natalia Gutierrez-Pinto ◽  
Gustavo A. Londoño ◽  
Mark A. Chappell ◽  
Jay F. Storz

AbstractEndotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolism (BMR), maximal metabolism (MMR), and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species.Summary statementWe tested for altitude-related variation in aerobic metabolism in species pairs with contrasting elevational ranges. Metabolic rates were significantly higher in most highland species but there was no uniform elevational trend.


Oecologia ◽  
2021 ◽  
Author(s):  
Marius Klotz ◽  
Jörg Schaller ◽  
Susanne Kurze ◽  
Bettina M. J. Engelbrecht

AbstractSilicon (Si) accumulation is known to alleviate various biotic and abiotic stressors in plants with potential ecological consequences. However, for dicotyledonous plants our understanding of Si variation remains limited. We conducted a comparative experimental study to investigate (1) interspecific variation of foliar Si concentrations across 37 dicotyledonous forbs of temperate grasslands, (2) intraspecific variation in foliar Si concentration in response to soil Si availability, the influence of (3) phylogenetic relatedness, and (4) habitat association to moisture. Foliar Si differed markedly (approx. 70-fold) across the investigated forbs, with some species exhibiting Si accumulation similar to grasses. Foliar Si increased with soil Si availability, but the response varied across species: species with higher Si accumulation capacity showed a stronger response, indicating that they did not actively upregulate Si uptake under low soil Si availability. Foliar Si showed a pronounced phylogenetic signal, i.e., closely related species exhibited more similar foliar Si concentrations than distantly related species. Significant differences in foliar Si concentration within closely related species pairs nevertheless support that active Si uptake and associated high Si concentrations has evolved multiple times in forbs. Foliar Si was not higher in species associated with drier habitats, implying that in dicotyledonous forbs of temperate grasslands high foliar Si is not an adaptive trait to withstand drought. Our results demonstrated considerable inter- and intraspecific variation in foliar Si concentration in temperate forbs. This variation should have pervasive, but so far understudied, ecological consequences for community composition and functioning of temperate grasslands under land-use and climate change.


Sign in / Sign up

Export Citation Format

Share Document