scholarly journals The pht4;1-3 mutant line contains a loss of function allele in the Fatty Acid Desaturase 7 gene caused by a remnant inactivated selection marker—a cautionary tale

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4134
Author(s):  
Anders K. Nilsson ◽  
Mats X. Andersson

A striking and unexpected biochemical phenotype was found in an insertion mutant line in the model plant Arabidopsis thaliana. One of two investigated insertion mutant lines in the gene encoding the phosphate transporter PHT4;1 demonstrated a prominent loss of trienoic fatty acids, whereas the other insertion line was indistinguishable from wild type in this aspect. We demonstrate that the loss of trienoic fatty acids was due to a remnant inactive negative selection marker gene in this particular transposon tagged line, pht4;1-3. This constitutes a cautionary tale that warns of the importance to confirm the loss of this type of selection markers and the importance of verifying the relationship between a phenotype and genotype by more than one independent mutant line or alternatively genetic complementation.

2006 ◽  
Vol 131 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Mauricio A. Cañoles ◽  
Randolph M. Beaudry ◽  
Chuanyou Li ◽  
Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.


Endocrinology ◽  
2017 ◽  
Vol 158 (5) ◽  
pp. 1328-1338 ◽  
Author(s):  
Meredith D. Hartley ◽  
Lisa L. Kirkemo ◽  
Tapasree Banerji ◽  
Thomas S. Scanlan

Abstract X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disorder characterized by adrenal insufficiency and central nervous system (CNS) demyelination. All patients with X-ALD have the biochemical abnormality of elevated blood and tissue levels of very long chain fatty acids (VLCFAs), saturated fatty acids with 24 to 26 carbons. X-ALD results from loss of function mutations in the gene encoding the peroxisomal transporter ABCD1, which is responsible for uptake of VLCFAs into peroxisomes for degradation by oxidation. One proposed therapeutic strategy for genetic complementation of ABCD1 is pharmacologic upregulation of ABCD2, a gene encoding a homologous peroxisomal transporter. Here, we show that thyroid hormone or sobetirome, a clinical-stage selective thyroid hormone receptor agonist, increases cerebral Abcd2 and lowers VLCFAs in blood, peripheral organs, and brains of mice with defective Abcd1. These results support an approach to treating X-ALD that involves a thyromimetic agent that reactivates VLCFA disposal both in the periphery and the CNS.


2008 ◽  
Vol 75 (4) ◽  
pp. 1211-1214 ◽  
Author(s):  
Marie-Pierre Dubeau ◽  
Mariana Gabriela Ghinet ◽  
Pierre-�tienne Jacques ◽  
Nancy Clermont ◽  
Carole Beaulieu ◽  
...  

ABSTRACT We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1875-1887
Author(s):  
Nicole Bechtold ◽  
Bénédicte Jaudeau ◽  
Sylvie Jolivet ◽  
Bruno Maba ◽  
Daniel Vezon ◽  
...  

Abstract In planta transformation methods are now commonly used to transform Arabidopsis thaliana by Agrobacterium tumefaciens. The origin of transformants obtained by these methods has been studied by inoculating different floral stages and examining gametophytic expression of an introduced β-glucuronidase marker gene encoding GUS. We observed that transformation can still occur after treating flowers where embryo sacs have reached the stage of the third division. No GUS expression was observed in embryo sacs or pollen of plants infiltrated with an Agrobacterium strain bearing a GUS gene under the control of a gametophyte-specific promoter. To identify the genetic target we used an insertion mutant in which a gene essential for male gametophytic development has been disrupted by a T-DNA bearing a Basta resistance gene (BR). In this mutant the BR marker is transferred to the progeny only by the female gametes. This mutant was retransformed with a hygromycin resistance marker and doubly resistant plants were selected. The study of 193 progeny of these transformants revealed 25 plants in which the two resistance markers were linked in coupling and only one plant where they were linked in repulsion. These results point to the chromosome set of the female gametophyte as the main target for the T-DNA.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


Sign in / Sign up

Export Citation Format

Share Document