scholarly journals 16S rRNA gene sequencing reveals effects of photoperiod on cecal microbiota of broiler roosters

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4390 ◽  
Author(s):  
Jun Wang ◽  
Lucky T. Nesengani ◽  
Yongsheng Gong ◽  
Yujiang Yang ◽  
Wenfa Lu

Photoperiod is an important factor in stimulating broiler performance in commercial poultry practice. However, the mechanism by which photoperiod affects the performance of broiler chickens has not been adequately explored. The current study evaluated the effects of three different photoperiod regimes (short day (LD) = 8 h light, control (CTR) = 12.5 h light, and long day (SD) = 16 h light) on the cecal microbiota of broiler roosters by sequencing bacterial 16S rRNA genes. At the phylum level, the dominant bacteria were Firmicutes (CTR: 68%, SD: 69%, LD: 67%) and Bacteroidetes (CTR: 25%, SD: 26%, and LD: 28%). There was a greater abundance of Proteobacteria (p < 0.01) and Cyanobacteria (p < 0.05) in chickens in the LD group than in those in the CTR group. A significantly greater abundance of Actinobacteria was observed in CTR chickens than in SD and LD chickens (p < 0.01). The abundance of Deferribacteres was significantly higher in LD chickens than in SD chickens (p < 0.01). Fusobacteria and Proteobacteria were more abundant in SD chickens than in CTR and LD chickens. The predicted functional properties indicate that cellular processes may be influenced by photoperiod. Conversely, carbohydrate metabolism was enhanced in CTR chickens as compared to that in SD and LD chickens. The current results indicate that different photoperiod regimes may influence the abundance of specific bacterial populations and then contribute to differences in the functional properties of gut microbiota of broiler roosters.

2006 ◽  
Vol 72 (5) ◽  
pp. 3531-3542 ◽  
Author(s):  
Sabine Kleinsteuber ◽  
Volker Riis ◽  
Ingo Fetzer ◽  
Hauke Harms ◽  
Susann M�ller

ABSTRACT The diversity and dynamics of a bacterial community extracted from an exploited oil field with high natural soil salinity near Comodoro Rivadavia in Patagonia (Argentina) were investigated. Community shifts during long-term incubation with diesel fuel at four salinities between 0 and 20% NaCl were monitored by single-strand conformation polymorphism community fingerprinting of the PCR-amplified V4-V5 region of the 16S rRNA genes. Information obtained by this qualitative approach was extended by flow cytometric analysis to follow quantitatively the dynamics of community structures at different salinities. Dominant and newly developing clusters of individuals visualized via their DNA patterns versus cell sizes were used to identify the subcommunities primarily involved in the degradation process. To determine the most active species, subcommunities were separated physically by high-resolution cell sorting and subsequent phylogenetic identification by 16S rRNA gene sequencing. Reduced salinity favored the dominance of Sphingomonas spp., whereas at elevated salinities, Ralstonia spp. and a number of halophilic genera, including Halomonas, Dietzia, and Alcanivorax, were identified. The combination of cytometric sorting with molecular characterization allowed us to monitor community adaptation and to identify active and proliferating subcommunities.


2017 ◽  
Vol 61 ◽  
pp. 69-84 ◽  
Author(s):  
Ali Naghoni ◽  
Giti Emtiazi ◽  
Mohammad Ali Amoozegar ◽  
Zahra Etemadifar ◽  
Seyed Abolhassan Shahzadeh Fazeli

Repetitive extragenic palindromic elements-polymerase chain reaction (rep-PCR) with 16S ribosomal ribonucleic acid (16S rRNA) genes sequences successfully used for the analysis of microbial community. In this study, the prokaryotic community in Lake Meyghan described by using rep-PCR analysis along with 16S rRNA gene sequencing. The water samples were collected from Lake Meyghan in November 2013. All samples were diluted and cultured on three different media. To estimate the number of prokaryotes per milliliter of the lake we used quantitative real‑time PCR (qPCR). Rep-PCR combination with 16S rRNA gene sequencing was performed to investigate prokaryotes biodiversity in the lake. 305 strains were isolated in this work; 113 isolates for green region, 102 isolates for red region, and 90 isolates for white region. The dendrograms generated 10, 7, and 9 clusters for a 70 % similarity cut-off for green, red, and white regions, respectively. Based on rep-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by (77.5 %)Halobacteriacaeand many isolates were related to the generaHalorubrum,Haloarcula,Haloterrigena,Natrinema, andHalovivaxin the white region. In the red region more isolated strains (57.5 %) belonged toBacillaceaeand the remaining 42.5 % of isolates belonged to archaea domain,Halorubrum, andHaloarcula. In the green region members ofGammaproteobacteriawere recoverd, this region was dominant withPseudoalteromonas,Salinivibrio, andAliidiomarina.


2014 ◽  
Vol 81 (2) ◽  
pp. 604-613 ◽  
Author(s):  
David Wilkins ◽  
Xiao-Ying Lu ◽  
Zhiyong Shen ◽  
Jiapeng Chen ◽  
Patrick K. H. Lee

ABSTRACTMethanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes.Methanobacteriales,Methanomicrobiales, andMethanosarcinaleswere detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of themcrAgenes suggested that these digesters were dominated by acetoclastic methanogens, particularlyMethanosarcinales, while the other digesters were dominated by hydrogenotrophicMethanomicrobiales. The proposed euryarchaeotal orderMethanomassiliicoccalesand the uncultured WSA2 group were detected with the 16S rRNA gene, and potentialmcrAgenes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using themcrAgene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance ofmcrAtranscripts in digesters treating sludge and wastewater samples, supporting themcrAgene as a biomarker for methane yield.


2000 ◽  
Vol 66 (9) ◽  
pp. 3951-3959 ◽  
Author(s):  
Timothy M. LaPara ◽  
Cindy H. Nakatsu ◽  
Lisa Pantea ◽  
James E. Alleman

ABSTRACT The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32�C) and thermophilic (50 to 58�C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domainBacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the β subdivision of the divisionProteobacteria (β-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive andSynergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, includingCytophaga-Flavobacterium-Bacteroides,Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, andProteobacteria (α-proteobacteria, β-proteobacteria, γ-proteobacteria and δ-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity—a function of both the total number of species present (richness) and their relative distribution (evenness).


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2003 ◽  
Vol 69 (9) ◽  
pp. 5512-5518 ◽  
Author(s):  
Brett J. Baker ◽  
Philip Hugenholtz ◽  
Scott C. Dawson ◽  
Jillian F. Banfield

ABSTRACT During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat.


2009 ◽  
Vol 75 (12) ◽  
pp. 4139-4148 ◽  
Author(s):  
James P. Davis ◽  
Noha H. Youssef ◽  
Mostafa S. Elshahed

ABSTRACT We used a combination of 16S rRNA gene clone library surveys, quantitative PCR (qPCR) analysis, and fluorescent in situ hybridization to investigate the diversity, abundance, and distribution of members of candidate division SR1 in multiple habitats. Using SR1-specific 16S rRNA gene primers, we identified multiple novel SR1 lineages in four different anaerobic environments: sediments from Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma; inner layers of microbial mats obtained from Sperm Pool, a high-temperature, low-pH pool (55°C, pH 2.5) in Yellowstone National Park; fresh bovine ruminal contents; and anaerobic freshwater pond sediments (Duck Pond) in Norman, Oklahoma. qPCR analysis indicated that SR1 members constitute a small fraction (<0.01%) of the microbial communities in Duck Pond and ruminal samples but constitute a significant fraction (11.6 and 48.7%) of the total number of bacterial 16S rRNA genes in Zodletone Spring and the inner layers of Sperm Pool microbial mat samples, respectively. By using SR1-specific fluorescent probes, filamentous cells were identified as the sole SR1 morphotype in all environments examined, with the exception of Sperm Pool, where a second bacillus morphotype was also identified. Using a full-cycle 16S rRNA approach, we show that each of these two morphotypes corresponds to a specific phylogenetic lineage identified in the Sperm Pool clone library. This work greatly expands the intralineage phylogenetic diversity within candidate division SR1 and provides valuable quantification and visualization tools that could be used for investigating the ecological roles, dynamics, and genomics of this as-yet-uncultured bacterial phylum.


Sign in / Sign up

Export Citation Format

Share Document