scholarly journals Phylogeny, time divergence, and historical biogeography of the South AmericanLiolaemus alticolor-bibroniigroup (Iguania: Liolaemidae)

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4404 ◽  
Author(s):  
Sabrina N. Portelli ◽  
Andrés S. Quinteros

The genusLiolaemuscomprises more than 260 species and can be divided in two subgenera:EulaemusandLiolaemus sensu stricto. In this paper, we present a phylogenetic analysis, divergence times, and ancestral distribution ranges of theLiolaemus alticolor-bibroniigroup (Liolaemus sensu strictosubgenus). We inferred a total evidence phylogeny combining molecular (Cytband12Sgenes) and morphological characters using Maximum Parsimony and Bayesian Inference. Divergence times were calculated using Bayesian MCMC with an uncorrelated lognormal distributed relaxed clock, calibrated with a fossil record. Ancestral ranges were estimated using the Dispersal-Extinction-Cladogenesis (DEC-Lagrange). Effects of somea prioriparameters of DEC were also tested. Distribution ranged from central Perú to southern Argentina, including areas at sea level up to the high Andes. TheL. alticolor-bibroniigroup was recovered as monophyletic, formed by two clades:L. walkeriandL. gracilis, the latter can be split in two groups. Additionally, many species candidates were recognized. We estimate that theL. alticolor-bibroniigroup diversified 14.5 Myr ago, during the Middle Miocene. Our results suggest that the ancestor of theLiolaemus alticolor-bibroniigroup was distributed in a wide area including Patagonia and Puna highlands. The speciation pattern follows the South-North Diversification Hypothesis, following the Andean uplift.

Zootaxa ◽  
2019 ◽  
Vol 4672 (1) ◽  
pp. 1-68
Author(s):  
NAOYA OHTSUCHI ◽  
TOMOHIKO KAWAMURA

Pugettia quadridens (De Haan, 1837) and its closely similar congener, P. intermedia Sakai, 1938, are redescribed and illustrated and their possible infraspecific variations related to sexual, ontogenetic, and environmental differences are discussed. As a result, a new species, Pugettia ferox, which had long been believed to be a local variant of P. quadridens sensu lato in the northeast Japan, is described. Despite moderate sexual dimorphism and considerable variability related to their ontogeny, the three species can be distinguished from each other by the combination of various morphological characters including the structure of the orbital region and male first gonopods. The patterns of ontogenetic morphological and morphometric changes in the chelipeds, gonopods, and pleons are also differentiated among the three species. The updated distribution ranges of three species greatly overlap in the northeast Asian waters, although P. quadridens sensu stricto is distributed more southward than P. ferox n. sp.. Distinguishing characters between P. quadridens s.s. and P. pellucens Rathbun, 1932, and between P. intermedia and P. vulgaris Ohtsuchi, Kawamura & Takeda, 2014, are revised. 


2004 ◽  
Vol 359 (1450) ◽  
pp. 1485-1494 ◽  
Author(s):  
Susanne S. Renner

Melastomataceae sensu stricto (excluding Memecylaceae) comprise some 3000 species in the neotropics, 1000 in Asia, 240 in Africa, and 230 in Madagascar. Previous family–wide morphological and DNA analyses have shown that the Madagascan species belong to at least three unrelated lineages, which were hypothesized to have arrived by trans–oceanic dispersal. An alternative hypothesis posits that the ancestors of Madagascan, as well as Indian, Melastomataceae arrived from Africa in the Late Cretaceous. This study tests these hypotheses in a Bayesian framework, using three combined sequence datasets analysed under a relaxed clock and simultaneously calibrated with fossils, some not previously used. The new fossil calibration comes from a re–dated possibly Middle or Upper Eocene Brazilian fossil of Melastomeae. Tectonic events were also tentatively used as constraints because of concerns that some of the family's fossils are difficult to assign to nodes in the phylogeny. Regardless of how the data were calibrated, the estimated divergence times of Madagascan and Indian lineages were too young for Cretaceous explanations to hold. This was true even of the oldest ages within the 95% credibility interval around each estimate. Madagascar's Melastomeae appear to have arrived from Africa during the Miocene. Medinilla , with some 70 species in Madagascar and two in Africa, too, arrived during the Miocene, but from Asia. Gravesia , with 100 species in Madagascar and four in east and west Africa, also appears to date to the Miocene, but its monophyly has not been tested. The study afforded an opportunity to compare divergence time estimates obtained earlier with strict clocks and single calibrations, with estimates based on relaxed clocks and different multiple calibrations and taxon sampling.


2019 ◽  
Vol 71 ◽  
pp. 1-156 ◽  
Author(s):  
Andrew M.R. Bennett ◽  
Sophie Cardinal ◽  
Ian D. Gauld ◽  
David B. Wahl

A combined morphological and molecular phylogenetic analysis was performed to evaluate the subfamily relationships of the parasitoid wasp family Ichneumonidae (Hymenoptera). Data were obtained by coding 135 morphological and 6 biological characters for 131 exemplar species of ichneumonids and 3 species of Braconidae (the latter as outgroups). The species of ichneumonids represent all of the 42 currently recognized subfamilies. In addition, molecular sequence data (cytochrome oxidase I “DNA barcoding” region, the D2 region of 28S rDNA and part of the F2 copy of elongation factor 1-alpha) were obtained from specimens of the same species that were coded for morphology (1309 base pairs total). The data were analyzed using parsimony and Bayesian analyses. The parsimony analysis using all data recovered previously recognized informal subfamily groupings (Pimpliformes, Ophioniformes, Ichneumoniformes), although the relationships of these three groups to each other differed from previous studies and some of the subfamily relationships within these groupings had not previously been suggested. Specifically, Ophioniformes was the sister group to (Ichneumoniformes + Pimplformes), and Labeninae was placed near Ichneumoniformes, not as sister group to all Ichneumonidae except Xoridinae. The parsimony analysis using only morphological characters was poorly resolved and did not recover any of the three informal subfamily groupings and very few of the relationships were similar to the total-evidence parsimony analysis. The molecular-only parsimony analysis and both Bayesian analyses (total-evidence and molecular-only) recovered Pimpliformes, a restricted Ichneumoniformes grouping and many of the subfamily groupings recovered in the total-evidence parsimony analysis. A comparison and discussion of the results obtained by each phylogenetic method and different data sets is provided. It is concluded that the molecular characters produced results that were relatively consistent with traditional, non-phylogenetic concepts of relationships between the ichneumonid subfamilies, whereas the morphological characters did not (at least not by themselves). The inclusion of both molecular and morphological characters using parsimony produced a topology that was the closest to the traditional subfamily relationships. The method of analysis did not greatly affect the overall topology for the molecular-only analyses, but there were differences between Bayesian and parsimony results for the total-evidence analyses (especially near the root of the tree). The Bayesian results did not seem to be altered very much by the inclusion of morphological characters, unlike in the parsimony analysis. In summary, the following groups were supported in multiple analyses regardless of the characters used or method of tree-building: Pimpliformes, higher Ophioniformes, higher Pimpliformes, (Claseinae + Pedunculinae), (Banchinae + Stilbopinae), Campopleginae, Cremastinae, Diplazontinae, Ichneumoninae (including Alomya), Labeninae, Ophioninae, Poemeniinae, Rhyssinae, and Tersilochinae sensu stricto. Conversely, Ctenopelmatinae and Tryphoninae were never recovered without inclusion of other taxa. Based on the hypothesis of relationships obtained by the total-evidence parsimony analysis, the following formal taxonomic changes are proposed: Alomyinae Förster (= Alomya Panzer and Megalomya Uchida) is once again synonymized with Ichneumoninae and is now considered a tribe (Alomyinirev. stat.); and Notostilbops Townes is transferred from Stilbopinae to Banchinae, tribe Atrophini.


The Auk ◽  
2021 ◽  
Author(s):  
Per Alström ◽  
Pamela C Rasmussen ◽  
Canwei Xia ◽  
Lijun Zhang ◽  
Chengyi Liu ◽  
...  

Abstract Prinias (Cisticolidae: Prinia) are resident warblers of open areas across Africa and Asia and include many polytypic species whose species limits have not been seriously reevaluated recently. Based on an integrative taxonomic analysis of morphology, song, and mitochondrial DNA (mtDNA), we suggest that 2 species should be recognized in the Graceful Prinia (Prinia gracilis) complex. In addition, our morphological analyses show the existence of a well-marked undescribed form in southeastern Somalia, which we name herein as a new subspecies. Prinia gracilis is a small, drab, long-tailed species with streaking above and plain pale underparts that has been suggested to fall into 2 groups: the southwestern nominate group (from Egypt to Oman) and the northeastern lepida group (from Turkey through India). However, the characters presented to justify this grouping are variable and show a mosaic pattern, and whether genetic and vocal differences exist is unknown. We found consistent between-group song differences, with the nominate group giving consistently longer inter-phrase intervals, whereas the members of the lepida group sing an essentially continuous reel. An mtDNA tree suggests a deep split between the nominate and lepida groups, with a coalescence time between these clades of ~ 2.2 million years ago. Vocal and mtDNA analyses provided evidence that the northeastern Arabian Peninsula taxon carpenteri belongs to the lepida group. We found that, of all the morphological characters proposed, only proportions and tail barring and spotting relatively consistently distinguish the 2 groups. However, these characters strongly suggest that the eastern Arabian Peninsula is populated by taxa of both the gracilis and lepida groups, in different areas, but we lack genetic and bioacoustic data to corroborate this. Although further study is needed in potential contact zones, we suggest that 2 species should be recognized in the P. gracilis complex, and we propose the retention of the English name Graceful Prinia for P. gracilis sensu stricto, while we suggest that P. lepida be known as Delicate Prinia.


Zootaxa ◽  
2021 ◽  
Vol 4958 (1) ◽  
pp. 489-502
Author(s):  
FILIPE MICHELS BIANCHI

The Carpocorini are distributed worldwide, and it is one of the most speciose tribes within the Pentatomidae with 127 genera and more than 500 valid species. Recently, Adustonotus Bianchi was described to contain eight species formerly placed within Euschistus Dallas. Among them, Adustonotus grandis (Rolston) and Adustonotus latus (Dallas) are remarkable for their large size. Herein, the phylogenetic position of a new taxon is inferred by a total evidence analysis based on 85 morphological characters and four molecular markers. Adustonotus graziae sp. nov. is described, and is recovered in a polytomic lineage, including A. grandis and A. latus. These species share a solid combination of features that enable them to be separated from the other Adustonotus species (e.g., large size, the humeral angles spatulate and exceptionally produced, and the capsula seminalis shortened). Illustrations of external and internal genitalia, and a distributional map are provided. 


2021 ◽  
Vol 9 (1) ◽  
pp. 49-55
Author(s):  
Vanlal hruaia ◽  
◽  
Lal rinmuana ◽  
J Lalbiaknunga ◽  
Laldinfeli Ralte

Euphorbiaceae is one of the largest family of flowering plants, in our study different species were collected from different localities of Mizoram, the collected specimens were studied and their morphological features noted. 34 genera of Euphorbiaceae s.l were used in the study. Cladistic analysis was performed in Mesquite software and Phenetic analysis was done in NTsys software. Both analyses produce a pictorial representation in a form of a tree; cladistic analysis produce phylogenetic tree (evolutionary relationship) while phenetic analysis produce phenogram (morphological relationship). The results of the aforementioned analyses were further analysed by total evidence technique and taxonomic congruence, a phylogenetic software PAUP is used for this purpose. The resultant trees were very different and comparison was done to find correlation between evolution and morphological characters. The research finds various correlation among characters like the number of locule in ovule, phyllanthoid branching and support the inclusion of genus like Breynia, Sauropus into Phyllanthus.


Bothalia ◽  
2009 ◽  
Vol 39 (2) ◽  
pp. 177-183 ◽  
Author(s):  
L. Gugliemone ◽  
L. Gallo ◽  
M. Meregalli ◽  
G. F. Smith ◽  
E. Figueiredo

The taxa belonging to the genus Aloe published in Synopsis methodica stirpium horti regii taurinensis (Allioni 1760) and in Auctarium ad synopsim meihodicam stirpium horti regii taurinensis (Allioni 1773) were examined. The protologues of Aloe maculata All. and A. verrucosospinosa All. are analysed and lectotypes designated. The homonymy of A. succotrina All. w ith A. succotrina Weston (1770) is recognized, and the lectotype o f this last name designated. Epitypes are selected to fix the application of all three names. Short differential diagnoses o f the three species are given and their distribution ranges discussed; distribution maps based on specimens held in the South African National Herbarium (PRE), KwaZulu-Natal Herbarium (NH). Compton Herbarium (NBG) and the South African Museum Collection (SAM) held in NBG are provided.


2004 ◽  
Vol 118 (3) ◽  
pp. 326 ◽  
Author(s):  
Caroline Healy ◽  
Lynn J. Gillespie

The Saxifraga nivalis complex displays significant ecological, morphological and cytological variation. Most European studies suggest that the S. nivalis complex comprises two distinct species: Saxifraga nivalis sensu stricto and Saxifraga tenuis. However, the presence of intermediate morphotypes, inconsistencies in chromosomal counts and variability in morphological keys and descriptions have led to different taxonomic interpretations of the complex in North America. This study investigated the systematics of Canadian Arctic Island members of this complex from 157 specimens using 23 morphological characters. Principal component analysis of the morphological data revealed two adjacent clusters, corresponding to the two taxa and consistent with a close morphological similarity and the presence of hybrids. A preliminary restriction site analysis of five non-coding regions of the chloroplast genome, trnH-trnK, trnT-trnF, trnF-trnV, trnV-rbcL and rbcL-ORF106, was conducted using 21 restriction endonucleases. This analysis indicated a length difference between the trnT-trnF region of S. nivalis and that of S. tenuis, but no difference in restriction sites for any of the assayed regions. These results confirm that in the Canadian Arctic, the S. nivalis complex consists of two closely related, largely sympatric species, with notable morphological variability, and possible hybrids.


2004 ◽  
Vol 73 (1-2) ◽  
pp. 3-163 ◽  
Author(s):  
Ronald A. Jenner

This paper critically assesses all morphological cladistic analyses of the Metazoa that were published during the last one and a half decades. Molecular and total evidence analyses are also critically reviewed. This study focuses on evaluating alternative phylogenetic positions of the ‘acoelomate’ worms: Platyhelminthes, Nemertea, and Gnathostomulida. This paper consists of two parts. In Part I, all recently proposed sister group hypotheses and the supporting synapomorphies for these phyla are evaluated. Discrepancies in the treatment of corresponding characters in different cladistic analyses are identified, and where possible, resolved. In Part II, the overall phylogenetic significance across the Metazoa of all characters relevant for placing the ‘acoelomate’ worms is examined. The coding and scoring of these characters for other phyla are evaluated, and uncertainties in our understanding are pointed out in order to guide future research. The characters discussed in this paper are broadly categorized as follows: epidermis and cuticle, reproduction and sexual condition, development, larval forms, coeloms and mesoderm source, nervous system and sensory organs, nephridia, musculature, digestive system, and miscellaneous characters. Competing phylogenetic hypotheses are compared in terms of several criteria: 1) taxon sampling and the fulfillment of domain of definition for each character; 2) character sampling; 3) character coding; 4) character scoring and quality of primary homology; 5) quality of the proposed diagnostic synapomorphies as secondary homologies. On the basis of this study I conclude that a sister group for the Platyhelminthes has not yet been unambiguously established. A clade minimally composed of Neotrochozoa (Mollusca, Sipuncula, Echiura, Annelida) emerges as the most likely sister group of the Nemertea on the basis of morphological and total evidence analyses. Finally, morphological data currrently favor a sister group relationship of Gnathostomulida and Syndermata (probably plus Micrognathozoa). In contrast, molecular or total evidence analyses have not identified a reliable sister group of Gnathostomulida.Further progress in our understanding of metazoan phylogeny crucially depends on the improvement of the quality of currently adopted cladistic data matrices. A thorough reassessment of many of the more than 70 morphological characters discussed here is necessary. Despite the recent compilation of comprehensive data matrices, the power to test competing hypotheses of higher-level metazoan relationships is critically compromised due to uncritical data selection and poor character study in even the most recently published cladistic analyses.


2020 ◽  
Author(s):  
Jyothi Kara ◽  
Cinthya S. G. Santos ◽  
Angus H. H. Macdonald ◽  
Carol A. Simon

The perceived cosmopolitanism of polychaete worms could be an artefact of historical factors such as poor original species descriptions, lack of type material and the European taxonomic bias, to name a few. Thus, it is possible that several cosmopolitan species hide complexes of cryptic and pseudocryptic species. Two putative cosmopolitan species, Platynereis dumerilii and Platynereis australis, collected in South Africa were investigated here (1) to determine whether the South African taxa are conspecific with the morphologically identical taxa from France and New Zealand (the respective type localities of P. dumerilii and P. australis), (2) to compare the South African species morphometrically to determine whether their morphological characters are reliable enough to separate them, and (3) to investigate whether these species have geographically structured populations along the coast of South Africa. Molecular data (COI and ITS1) confirm that P. dumerilii and P. australis do not occur in South Africa. Instead, the South African taxon formerly thought to be Platynereis dumerilii is new and is described here as Platynereis entshonae, sp. nov.; the identity of the other South African species is currently unresolved and is treated here as Platynereis sp. Surprisingly, Platynereis massiliensis (type locality: Marseilles) nested within the South African Platynereissp. clade but, since it is part of a cryptic species complex in the Mediterranean, the name is considered doubtful. Morphological characters traditionally used to define these South African Platynereis species are not reliable as predefined morphological groupings do not match phylogenetic clades and principal component scores revealed no separation in morphological characters that could distinguish between them. Haplotype networks and phylogenetic trees revealed that P. entshonae, sp. nov. and Platynereis sp. have geographically structured populations along the South African coast. http://zoobank.org/urn:lsid:zoobank.org:pub:6E36A210-9E48-430F-8A93-EDC27F0C5631


Sign in / Sign up

Export Citation Format

Share Document