scholarly journals Temporal shifts in endophyte bacterial community composition of sessile oak (Quercus petraea) are linked to foliar nitrogen, stomatal length, and herbivory

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5769 ◽  
Author(s):  
Luigimaria Borruso ◽  
Camilla Wellstein ◽  
Alessia Bani ◽  
Sara Casagrande Bacchiocchi ◽  
Ania Margoni ◽  
...  

We studied the relationship between plant functional foliar traits and the endophytic bacterial communities associated in trees, taking the example of sessile oak (Quercus petraea(Matt.) Liebl). Forty-five samples with replicates of eight leaves per sample were collected in spring, summer and autumn. Bacterial community diversity was analyzed via Automated Ribosomal Intergenic Spacer Analysis (ARISA). The leaf traits specific leaf area, level of herbivory, stomatal number, stomatal length, carbon and nitrogen concentration were measured for the leaves of each sample. For statistical analysis, linear mixed effect models, the Canonical Correlation Analysis (CCA) and Non-Parametric Multivariate Analysis of Variance (NPMANOVA) were applied. Herbivory, nitrogen and carbon concentration were significantly different in autumn compared to spring and summer (pvalue < 0.05), while stomatal length was differentiated between spring and the other two seasons (pvalue < 0.01). The seasonal differentiation of the bacterial community structure was explained by the first and second axes (29.7% and 25.3%, respectively) in the CCA. The bacterial community structure significantly correlated with herbivory, nitrogen concentration and stomatal length. We conclude that herbivory, nitrogen content, and size of stomatal aperture at the leaf level are important for endophyte colonization in oaks growth in alpine forest environments.

2013 ◽  
Vol 726-731 ◽  
pp. 1621-1627 ◽  
Author(s):  
Zhu Chen ◽  
Ying Liu ◽  
Liang Zi Liu ◽  
Xiao Jing Wang ◽  
Zhi Pei Liu ◽  
...  

The success of a recirculating aquaculture system (RAS) greatly depends on the structure, dynamics and activities of microbial community. Heterotrophic bacteria as the major members play various roles. The heterotrophic bacterial community structure in threestaged biofilters was studied using four different media. 228 isolates belonging to 77species were obtained and affiliated toGammaproteobacteria,Alphaproteobacteria,Bacteroidetes,Firmicutes,ActinobacteriaandBetaproteobacteria.Gammaproteobacteriawas the predominant group. The concurrence was found between potential pathogens (VibrioandShewanella) and probiotics (BacillusandPseudomonas). On the basis of community diversity index, we could infer that differences existed between stages, and the diversity index increased along the biofilters. A comprehensive understanding of microbial community in RAS will be in favor of utilization of microbial resources and optimizing the culture systems' operation.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250675
Author(s):  
Xiang Zheng ◽  
Qidi Zhu ◽  
Zhijun Zhou ◽  
Fangtong Wu ◽  
Lixuan Chen ◽  
...  

Insect microbial symbioses play a critical role in insect lifecycle, and insect gut microbiome could be influenced by many factors. Studies have shown that host diet and taxonomy have a strong influence on insect gut microbial community. In this study, we performed sequencing of V3-V4 region of 16S rRNA gene to compare the composition and diversity of 12 Ensifera from 6 provinces of China. Moreover, the influences of feeding habits and taxonomic status of insects on their gut bacterial community were evaluated, which might provide reference for further application research. The results showed that Proteobacteria (45.66%), Firmicutes (34.25%) and Cyanobacteria (7.7%) were the predominant bacterial phyla in Ensifera. Moreover, the gut bacterial community composition of samples with different feeding habits was significantly different, which was irrespective of their taxa. The highest diversity of gut bacteria was found in the omnivorous Ensifera. Furthermore, common and unique bacteria with biomarkers were found based on the dietary characteristics of the samples. However, the bacterial community structure of the Ensifera samples was significantly different from that of Caelifera. Therefore, we concluded that feeding habits and taxonomic status jointly affect the gut bacterial community composition of the samples from Orthoptera. However, the influence of feeding habit dominates when taxonomy category below the suborder level. In addition, the dominant, common and unique bacterial community structure could be used to predict the contrastic feeding habits of insects belonging to Ensifera.


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, Ferula sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (Slope position and soil depth) and Found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in Ferula sinkiangensi s rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in Ferula sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248485
Author(s):  
Edith M. Muwawa ◽  
Chinedu C. Obieze ◽  
Huxley M. Makonde ◽  
Joyce M. Jefwa ◽  
James H. P. Kahindi ◽  
...  

Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species–environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Zhang ◽  
Zhongke Wang ◽  
Xinhua Lv ◽  
Hanli Dang ◽  
Li Zhuang

Abstract Ferula sinkiangensis (F. sinkiangensis) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F. sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F. sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F. sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F. sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F. sinkiangensis. In addition, Soil physicochemical factors jointly explained 24.28% of variation in F. sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F. sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


2020 ◽  
Vol 27 (34) ◽  
pp. 42933-42947
Author(s):  
Xia Luo ◽  
Xinyi Xiang ◽  
Guoyi Huang ◽  
Xiaorui Song ◽  
Peijia Wang ◽  
...  

Abstract Extensive construction of dams by humans has caused alterations in flow regimes and concomitant alterations in river ecosystems. Even so, bacterioplankton diversity in large rivers influenced by cascade dams has been largely ignored. In this study, bacterial community diversity and profiles of seven cascade dams along the720 km of the Lancang River were studied using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Spatiotemporal variations of bacterial communities in sediment and water of the Gongguoqiao hydroelectric dam and factors affecting these variations were also examined. Microbial diversity and richness in surface water increased slightly from upstream toward downstream along the river. A significant positive correlation between spatial distance and dissimilarities in bacterial community structure was confirmed (Mantel test, r = 0.4826, p = 0.001). At the Gongguoqiao hydroelectric dam, temporal differences in water overwhelmed spatial variability in bacterial communities. Temperature, precipitation, and nutrient levels were major drivers of seasonal microbial changes. Most functional groups associated with carbon cycling in sediment samples decreased from winter to summer. Our findings improve our understanding of associations, compositions, and predicted functional profiles of microbial communities in a large riverine ecosystem influenced by multiple cascade dams.


Sign in / Sign up

Export Citation Format

Share Document