scholarly journals Isolation and characterization of vaginal Lactobacillus spp. in dromedary camels (Camelus dromedarius): in vitro evaluation of probiotic potential of selected isolates

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8500
Author(s):  
Wael M. El-Deeb ◽  
Mahmoud Fayez ◽  
Ibrahim Elsohaby ◽  
Ibrahim Ghoneim ◽  
Theeb Al-Marri ◽  
...  

Lactobacillus spp. is one of the beneficial lactic acid producing microbiota in the vagina, which is important for a healthy vaginal environment. However, little is known about vaginal Lactobacillus in dromedary camels (Camelus dromedarius). Therefore, this study aimed to isolate vaginal lactic acid bacteria (LAB) in dromedary camels and to study the probiotic potential of selected isolates. A total of 75 vaginal swabs were collected from pluriparous, non-pregnant, non-lactating dromedary camels. The LAB were isolated using deMan, Rogosa and Sharpe broth and agar media. Suspected LAB isolates were subjected to catalase testing and Gram staining and examined for indole production, nitrate reduction, hemolytic activity, cell surface hydrophobicity, auto- and coaggregation, antibacterial activity and characterized by 16S rRNA amplification and sequencing. Eighteen LABs were isolated from the 75 vaginal swabs. Among the 18 LAB isolates, six were Lactobacillus plantarum, eight were Lactobacillus fermentum, and four were Lactobacillus rhamnosus. None of the LAB isolates was hemolytic and only four LAB were H2O2 producing. The percentage of hydrophobicity ranged from 0% to 49.6%, 0% to 44.3% and 0% to 41.6% for hexadecane, xylene and toluene, respectively. All isolates showed higher (P < 0.05) autoaggregation after 24 h of incubation compared to 4 h. Furthermore, all LAB showed higher coaggregation (P < 0.05) and antimicrobial activity toward Staphylococcus aureus than to Escherichia coli. All LAB isolates were vancomycin resistant and sensitive to streptomycin, erythromycin, kanamycin and chloramphenicol. Only, three LAB isolates were resistant to tetracycline. The dromedary camel vaginal LAB isolates exhibited varying degrees of in vitro probiotic properties tested in this study and showed promising activity against the most common bacterial causes of endometritis in dromedary camels. Further investigation of the in vivo effect of these isolates is warranted.

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Katarzyna Marchwińska ◽  
Daniela Gwiazdowska

AbstractAnimal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.


Author(s):  
Y. Zeng ◽  
Y. Li ◽  
Q. P. Wu ◽  
J. M. Zhang ◽  
X. Q. Xie ◽  
...  

This study investigated the antipathogenic activity and probiotic potential of indigenous lactic acid bacteria (LAB) isolated from Chinese homemade pickles. In total, 27 samples were collected from different sites in China. Fifty-nine yielded pure colonies were identified by 16S rRNA gene sequencing as LAB and were initially evaluated for the antibacterial activity in vitro. Initial screening yielded Lactobacillus plantarum GS083, GS086, and GS090, which showed a broad-spectrum antibacterial activity against food-borne pathogens, especially multidrug-resistant pathogens. Meanwhile, organic acids were mainly responsible for the antimicrobial activity of the LAB strains, and the most abundant of these was lactic acid (19.32 ± 0.95 to 24.79 ± 0.40 g/l). Additionally, three L. plantarum strains demonstrated several basic probiotic characteristics including cell surface hydrophobicity, autoaggregation, and survival under gastrointestinal (GI) tract conditions. The safety of these isolates was also evaluated based on their antibiotic susceptibility, hemolytic risk, bile salt hydrolase activity, and existence of virulence or antibiotic resistance genes. All strains were safe at both the genomic and phenotypic levels. Therefore, L. plantarum GS083, GS086, and GS090 are fairly promising probiotic candidates and may be favorable for use as preservatives in the food industry.


Author(s):  
Al-Shimaa Ibrahim Ahmed ◽  
Gihan Mohamed El Moghazy ◽  
Tarek Ragab Elsayed ◽  
Hanan Abdel Latif Goda ◽  
Galal Mahmoud Khalafalla

Abstract Background The health-promoting effects along with global economic importance of consuming food products supplemented with probiotic microorganisms encouraged the researchers to discover new probiotics. Results Fourteen lactic acid bacterial isolates were identified as Enterococcus mediterraneensis, Lactobacillus fermentum, and Streptococcus lutetiensis by 16S rRNA gene sequencing, and in vitro characterized for their actual probiotic potential. All E. mediterraneensis isolates were resistant to clindamycin, whereas Lb. fermentum isolates were resistant to ampicillin, clindamycin, and vancomycin. The E. mediterraneensis and Lb. fermentum isolates displayed high overall digestive survival, ranged from 1.35 ± 0.06 to 32.73 ± 0.84% and from 2.01 ± 0.01 to 23.9 ± 1.85%, respectively. All isolates displayed cell surface hydrophobicity, ranged between 15.44 ± 6.72 and 39.79 ± 2.87%. The strongest auto-aggregation capability, higher than 40%, was observed for most E. mediterraneensis and Lb. fermentum isolates. The E. mediterraneensis isolates (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) exhibited the greatest co-aggregation with Salmonella typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Bacillus cereus. Fifty-seven and fourteen hundredth percent of E. mediterraneensis isolates could be considered bacteriocinogenic against E. coli O157:H7, B. cereus, and S. aureus. Conclusion This study is the first one to isolate Enterococcus mediterraneensis in Egypt and to characterize it as new species of probiotics globally. According to the results, E. mediterraneensis (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) are the most promising in vitro probiotic candidates.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 14
Author(s):  
Vaishali Singh ◽  
Suman Ganger ◽  
Shweta Patil

(1) Background: Probiotics are a live microbial supplement that improve hosts’ health by maintaining intestinal microbiota. The evidence suggests that probiotics can be used as a therapeutic strategy to improve overall digestive health. Lactic acid bacteria strains have been extensively used as probiotics. (2) Method: To isolate lactic acid bacteria with probiotic potential from food samples. Probiotic properties such as tolerance to low pH, bile, sodium chloride, lysozyme, antibiotic susceptibility, cell surface hydrophobicity, and antimicrobial activity were determined. (3) Results: Ten different isolates were examined to study their probiotic potential. In this study, Lactobacillus brevis was isolated and showed most of the probiotic properties, such as10% sodium chloride tolerance, 1% bile tolerance, growth in pH 2, and antimicrobial activity against E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Formation of biofilm by Klebsiella pneumoniae and Pseudomonas aeruginosa was also inhibited by cell free extracts of L. brevis, which reveals its therapeutic relevance. In addition, it was found to be stable at low temperature (4°C). (4) Conclusion: The above-mentioned results of L. brevis suggest that it has promising potential to be considered “probiotic”. Further in vivo assessments could be carried out that would provide its dual role of prevention as well as use in therapy.


Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2020 ◽  
Vol 8 (7) ◽  
pp. 1044
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Hyung Soo Park ◽  
Jeong Sung Jung ◽  
...  

The objective of this study was to isolate and characterize lactic acid bacteria (LAB) with low carbohydrate tolerance from rumen fluid and to elucidate their probiotic properties and the quality of fermentation of Medicago sativa L. and Trifolium incarnatum L. silage in vitro. We isolated 39 LAB strains and screened for growth in MRS broth and a low-carbohydrate supplemented medium; among them, two strains, Lactiplantibacillus plantarum (Lactobacillus plantarum) RJ1 and Pediococcus pentosaceus S22, were able to grow faster in the low-carbohydrate medium. Both strains have promising probiotic characteristics including antagonistic activity against P. aeruginosa, E. coli, S. aureus, and E. faecalis; the ability to survive in simulated gastric-intestinal fluid; tolerance to bile salts; and proteolytic activity. Furthermore, an in vitro silage fermentation study revealed that alfalfa and crimson clover silage inoculated with RJ1 and S22 showed significantly decreased pH and an increased LAB population at the end of fermentation. Also, the highest lactic acid production was noted (p < 0.05) in LAB-inoculated silage vs. non-inoculated legume silage at high moisture. Overall, the data suggest that RJ1 and S22 could be effective strains for fermentation of legume silage.


Sign in / Sign up

Export Citation Format

Share Document