scholarly journals A Bayesian approach to construct confidence intervals for comparing the rainfall dispersion in Thailand

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8502 ◽  
Author(s):  
Patcharee Maneerat ◽  
Sa-aat Niwitpong ◽  
Suparat Niwitpong

Natural disasters such as drought and flooding are the consequence of severe rainfall fluctuation, and rainfall amount data often contain both zero and positive observations, thus making them fit a delta-lognormal distribution. By way of comparison, rainfall dispersion may not be similar in enclosed regions if the topography and the drainage basin are different, so it can be evaluated by the ratio of variances. To estimate this, credible intervals using the highest posterior density based on the normal-gamma prior (HPD-NG) and the method of variance estimates recovery (MOVER) for the ratio of delta-lognormal variances are proposed. Monte Carlo simulation was used to assess the performance of the proposed methods in terms of coverage probability and relative average length. The results of the study reveal that HPD-NG performed very well and was able to meet the requirements in various situations, even with a large difference between the proportions of zeros. However, MOVER is the recommended method for equal small sample sizes. Natural rainfall datasets for the northern and northeastern regions of Thailand are used to illustrate the practical use of the proposed credible intervals.

Author(s):  
Fulvio De Santis ◽  
Stefania Gubbiotti

In Bayesian analysis of clinical trials data, credible intervals are widely used for inference on unknown parameters of interest, such as treatment effects or differences in treatments effects. Highest Posterior Density (HPD) sets are often used because they guarantee the shortest length. In most of standard problems, closed-form expressions for exact HPD intervals do not exist, but they are available for intervals based on the normal approximation of the posterior distribution. For small sample sizes, approximate intervals may be not calibrated in terms of posterior probability, but for increasing sample sizes their posterior probability tends to the correct credible level and they become closer and closer to exact sets. The article proposes a predictive analysis to select appropriate sample sizes needed to have approximate intervals calibrated at a pre-specified level. Examples are given for interval estimation of proportions and log-odds.


2021 ◽  
Vol 5 ◽  
pp. 62-76
Author(s):  
Sunisa Junnumtuam ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world and has caused millions of deaths. However, the number of daily COVID-19 deaths in Thailand has been low with most daily records showing zero deaths, thereby making them fit a Zero-Inflated Poisson (ZIP) distribution. Herein, confidence intervals for the Coefficient Of Variation (CV) of a ZIP distribution are derived using four methods: the standard bootstrap (SB), percentile bootstrap (PB), Markov Chain Monte Carlo (MCMC), and the Bayesian-based highest posterior density (HPD), for which using the variance of the CV is unnecessary. We applied the methods to both simulated data and data on the number of daily COVID-19 deaths in Thailand. Both sets of results show that the SB, MCMC, and HPD methods performed better than PB for most cases in terms of coverage probability and average length. Overall, the HPD method is recommended for constructing the confidence interval for the CV of a ZIP distribution. Doi: 10.28991/esj-2021-SPER-05 Full Text: PDF


2015 ◽  
Author(s):  
Julia A Palacios ◽  
John Wakeley ◽  
Sohini Ramachandran

Sophisticated inferential tools coupled with the coalescent model have recently emerged for estimating past population sizes from genomic data. Accurate methods are available for data from a single locus or from independent loci. Recent methods that model recombination require small sample sizes, make constraining assumptions about population size changes, and do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based Bayesian nonparametric method coupled with a sequentially Markov coalescent model which allows accurate inference of population sizes over time from a set of genealogies. In contrast to current methods, our approach considers a broad class of recombination events, including those that do not change local genealogies. We show that our method outperforms recent likelihood-based methods that rely on discretization of the parameter space. We illustrate the application of our method to multiple demographic histories, including population bottlenecks and exponential growth. In simulation, our Bayesian approach produces point estimates four times more accurate than maximum likelihood estimation (based on the sum of absolute differences between the truth and the estimated values). Further, our method's credible intervals for population size as a function of time cover 90 percent of true values across multiple demographic scenarios, enabling formal hypothesis testing about population size differences over time. Using genealogies estimated with ARGweaver, we apply our method to European and Yoruban samples from the 1000 Genomes Project and confirm key known aspects of population size history over the past 150,000 years.


Author(s):  
Patcharee Maneerat ◽  
Sa-Aat Niwitpong

When considering the medical care costs data with a high proportion of zero items of two inpatient groups, comparing them can be estimated using confidence intervals for the ratio of the means of two delta-lognormal distributions. The Bayesian credible interval-based uniform-beta prior (BCIh-UB) is proposed and compared with the generalized confidence interval (GCI), fiducial GCI (FGCI), the method of variance estimates recovery (MOVER), BCIh based on Jeffreys’ rule prior (BCIh-JR), and BCIh based on the normal-gamma prior (BCIh-NG). The coverage probability (CP), average length (AL), and lower and upper error rates were the performance measures applied for assessing the methods through a Monte Carlo simulation. A numerical evaluation showed that BCIh-UB had much better CP and AL than the others even with a large difference between the variances and with a high proportion of zero. Finally, to illustrate the efficacy of BCIh-UB, the methods were applied to two sets of medical care costs data.


Author(s):  
N. TURKKAN ◽  
T. PHAM-GIA

We provide the exact expression of the reliability of a system under a Bayesian approach, using beta distributions as both native and induced priors at the system level, and allowing uncertainties in sampling, expressed under the form of misclassifications, or noises, that can affect the final posterior distribution. Exact 100(1-α)% highest posterior density credible intervals, for system reliability, are computed, and comparisons are made with results from approximate methods proposed in the literature.


Author(s):  
Rui Hua ◽  
Wenhao Gui

In survival analysis, more than one factor typically contributes to individual failure. In addition, censoring is inevitable in lifespan tests or reliability studies due to external causes or experimental purposes. In this article, the competing risks model is considered and investigated under progressively Type-II censoring where data is from Lomax distributions. Assumptions are further made that these competitive factors are independently distributed, and the latent lifetimes of these factors follow Lomax distributions where both scale parameters and shape parameters are different. For all unknown parameters, maximum likelihood estimates have been attained by Newton-Raphson (NR) method as well as expectation maximization (EM) method, and then the approximate confidence intervals are acquired, in addition to bootstrap confidence intervals. Furthermore, under square error and LINEX loss functions, Bayes estimates and corresponding highest posterior density credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and laboratory dataset is presented and analyzed for illustrative purposes.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2130
Author(s):  
Wisunee Puggard ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The Birnbaum–Saunders (BS) distribution, which is asymmetric with non-negative support, can be transformed to a normal distribution, which is symmetric. Therefore, the BS distribution is useful for describing data comprising values greater than zero. The coefficient of variation (CV), which is an important descriptive statistic for explaining variation within a dataset, has not previously been used for statistical inference on a BS distribution. The aim of this study is to present four methods for constructing confidence intervals for the CV, and the difference between the CVs of BS distributions. The proposed methods are based on the generalized confidence interval (GCI), a bootstrapped confidence interval (BCI), a Bayesian credible interval (BayCI), and the highest posterior density (HPD) interval. A Monte Carlo simulation study was conducted to evaluate their performances in terms of coverage probability and average length. The results indicate that the HPD interval was the best-performing method overall. PM 2.5 concentration data for Chiang Mai, Thailand, collected in March and April 2019, were used to illustrate the efficacies of the proposed methods, the results of which were in good agreement with the simulation study findings.


2018 ◽  
Vol 47 (3) ◽  
pp. 40-62 ◽  
Author(s):  
Ankita Chaturvedi ◽  
Sanjay Kumar Singh ◽  
Umesh Singh

This article presents the procedures for the estimation of the parameter of Rayleighdistribution based on Type-II progressive hybrid censored fuzzy lifetime data. Classicalas well as the Bayesian procedures for the estimation of unknown model parameters has been developed. The estimators obtained here are Maximum likelihood (ML) estimator, Method of moments (MM) estimator, Computational approach (CA) estimator and Bayes estimator. Highest posterior density (HPD) credible intervals of the unknown parameter are obtained by using Markov Chain Monte Carlo (MCMC) technique. For numerical illustration, a real data set has been considered.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10758
Author(s):  
Patcharee Maneerat ◽  
Sa-Aat Niwitpong

The daily average natural rainfall amounts in the five regions of Thailand can be estimated using the confidence intervals for the common mean of several delta-lognormal distributions based on the fiducial generalized confidence interval (FGCI), large sample (LS), method of variance estimates recovery (MOVER), parametric bootstrap (PB), and highest posterior density intervals based on Jeffreys’ rule (HPD-JR) and normal-gamma-beta (HPD-NGB) priors. Monte Carlo simulation was conducted to assess the performance in terms of the coverage probability and average length of the proposed methods. The numerical results indicate that MOVER and PB provided better performances than the other methods in a variety of situations, even when the sample case was large. The efficacies of the proposed methods were illustrated by applying them to real rainfall datasets from the five regions of Thailand.


Sign in / Sign up

Export Citation Format

Share Document