scholarly journals The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8527
Author(s):  
Pengjie Xing ◽  
Yang Xu ◽  
Tingting Gao ◽  
Guanlin Li ◽  
Jijiang Zhou ◽  
...  

Background Most species of the Russulaceae are ectomycorrhizal (ECM) fungi, which are widely distributed in different types of forest ecology and drive important ecological and economic functions. Little is known about the composition variation of the Russulaceae fungal community aboveground and in the root and soil during the growing season (June–October) from a Quercus mongolica forest. In this study, we investigated the changes in the composition of the Russulaceae during the growing season of this type of forest in Wudalianchi City, China. Methods To achieve this, the Sanger sequencing method was used to identify the Russulaceae aboveground, and the high-throughput sequencing method was used to analyze the species composition of the Russulaceae in the root and soil. Moreover, we used the Pearson correlation analysis, the redundancy analysis and the multivariate linear regression analysis to analyze which factors significantly affected the composition and distribution of the Russulaceae fungal community. Results A total of 56 species of Russulaceae were detected in the Q. mongolica forest, which included 48 species of Russula, seven species of Lactarius, and one species of Lactifluus. Russula was the dominant group. During the growing season, the sporocarps of Russula appeared earlier than those of Lactarius. The number of species aboveground exhibited a decrease after the increase and were significantly affected by the average monthly air temperature (r = −0.822, p = 0.045), average monthly relative humidity (r = −0.826, p = 0.043), monthly rainfall (r = 0.850, p = 0.032), soil moisture (r = 0.841, p = 0.036) and soil organic matter (r = 0.911, p = 0.012). In the roots and soils under the Q. mongolica forest, the number of species did not show an apparent trend. The number of species from the roots was the largest in September and the lowest in August, while those from the soils were the largest in October and the lowest in June. Both were significantly affected by the average monthly air temperature (r2 = 0.6083, p = 0.040) and monthly rainfall (r2 = 0.6354, p = 0.039). Moreover, the relative abundance of Russula and Lactarius in the roots and soils showed a linear correlation with the relative abundance of the other fungal genera.

Biologia ◽  
2016 ◽  
Vol 71 (11) ◽  
Author(s):  
Evangelos G. Badieritakis ◽  
Argyro A. Fantinou ◽  
Nikolaos G. Emmanouel

AbstractThis paper presents a study of the composition of Carabidae and Scarabaeidae among other surface-active Coleoptera along with their seasonal fluctuation, species richness and relative abundance in three alfalfa hay fields from Kopais Valley (Greece) over a period of systematic samplings (June 2008 to May 2010). Field A was cut monthly (about 4 times per year) and field B bimonthly (3 times), although no field was sprayed. Field C was cut monthly and sprayed with the insecticide bifenthrin three times during the growing season. In total, 48 species of soil Coleoptera belonging to 11 families (particularly Carabidae and Scarabaeidae) were recorded. The family Carabidae was dominated by autumn breeders, with a spring and autumn activity-density peak. Agricultural management did not cause differences in the estimated number of species.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 410
Author(s):  
Magdalena Frąc ◽  
Giorgia Pertile ◽  
Jacek Panek ◽  
Agata Gryta ◽  
Karolina Oszust ◽  
...  

Waste exogenous organic matter, including spent mushroom substrate (SMS) and chicken manure (CM), can be used as the basis of a soil-improving cropping system in sustainable agriculture. However, there is—as yet—a lack of information about important quality indicators such as the fungal community relative abundance, structure and biodiversity in soils treated with these additives. In this study, the responses of the soil fungal community composition and mycobiome diversity to SMS and CM application compared to the control soil were evaluated using a combination of the following molecular approaches: quantitative polymerase chain reactions, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, and next-generation sequencing. The most abundant phylum for both treatments was Ascomycota, followed by Basidiomycota. The application of SMS and CM increased the abundance of fungi, including Tremellomycetes and Pezizomycetes for the SMS additive, while the Mortierellomycetes, Pezizomycetes, and Leotiomycetes levels increased after CM addition. SMS and CM beneficially reduced the relative abundance of several operational taxonomic units (OTUs) which are potential crop pathogens. The results provide a novel insight into the fungal community associated with organic additives, which should be beneficial in the task of managing the soil mycobiome as well as crop protection and productivity.


2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.


2013 ◽  
Vol 10 (11) ◽  
pp. 7575-7597 ◽  
Author(s):  
K. A. Luus ◽  
Y. Gel ◽  
J. C. Lin ◽  
R. E. J. Kelly ◽  
C. R. Duguay

Abstract. Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended to accumulate greater quantities of snow, likely because drier soils freeze faster and more thoroughly than wetter soils. Understanding and continuing to monitor these linkages at the regional scale using the ACE approach can allow insights to be gained into the complex response of Arctic ecosystems to climate-driven shifts in air temperature, vegetation, soil moisture and snow accumulation.


2015 ◽  
Vol 29 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Alina Danielewska ◽  
Marek Urbaniak ◽  
Janusz Olejnik

Abstract The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.


2006 ◽  
Vol 55 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Ferenc Ács ◽  
H. Breuer

The climatology of soil respiration in Hungary is presented. Soil respiration is estimated by a Thornthwaite-based biogeochemical model using soil hydrophysical data and climatological fields of precipitation and air temperature. Soil respiration fields are analyzed for different soil textures (sand, sandy loam, loam, clay loam and clay) and time periods (year, growing season and months).  Strong linear relationships were found between soil respiration and the actual evapotranspiration for annual and growing season time periods. In winter months soil respiration is well correlated with air temperature, while in summer months there is a quite variable relationship with water balance components. The strength of linear relationship between soil respiration and climatic variables is much better for coarser than for finer soil texture.


1972 ◽  
Vol 104 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Peter W. Price

AbstractParasitoid populations were sampled before, and for 4 years following, an aerial application of the insecticide phosphamidon to control a sawfly outbreak. Adult parasitoid mortality was high because of spraying, but a reservoir of parasitoids in host cocoons remained to repopulate the treated areas. In moister sites the number of species decreased and their relative abundance changed, but moderate numbers of parasitoids remained 4 years after spraying. In a dry site with little ground vegetation, none of the species present before spraying remained by the fourth year.


Sign in / Sign up

Export Citation Format

Share Document