scholarly journals Rare ground data confirm significant warming and drying in western equatorial Africa

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8732 ◽  
Author(s):  
Emma R. Bush ◽  
Kathryn Jeffery ◽  
Nils Bunnefeld ◽  
Caroline Tutin ◽  
Ruth Musgrave ◽  
...  

Background The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios. Methods We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results Lopé’s weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of −75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales. Conclusions The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the ‘dry’ models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear.

2019 ◽  
Author(s):  
Emma R Bush ◽  
Kathryn Jeffery ◽  
Nils Bunnefeld ◽  
Caroline Tutin ◽  
Ruth Musgrave ◽  
...  

Background.The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2000mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of inability to ground-truth estimates and persistent cloudiness. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests in equatorial Africa under future climate scenarios. Methods. We have the rare opportunity to analyse a 34-year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in western equatorial Africa. We used linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results. Lopé’s weather is characterised by a light-deficient, cool, long dry season. Long-term climatic means have changed significantly over the last three decades, with warming occurring at a rate of 0.23°C per decade (minimum daily temperature) and drying at a rate of 50mm per decade (total annual rainfall). Inter-annual variability is highly influenced by sea surface temperatures of the major oceans. In El Niño years Lopé experiences both higher temperatures and less rainfall with increased contrast between wet and dry seasons. Lopé rainfall observations lend support for the role of the Atlantic cold tongue in “dry” models of climate change in the region. Conclusions. Dry season cloud in western equatorial Africa plays a key role in reducing evaporative demand during seasonal drought and maintaining evergreen tropical forests despite relatively low annual rainfall. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of clouds to ocean temperatures and the viability of humid forests in this dry region should the clouds disappear.


Author(s):  
Emma R Bush ◽  
Kathryn Jeffery ◽  
Nils Bunnefeld ◽  
Caroline Tutin ◽  
Ruth Musgrave ◽  
...  

Background.The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2000mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of inability to ground-truth estimates and persistent cloudiness. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests in equatorial Africa under future climate scenarios. Methods. We have the rare opportunity to analyse a 34-year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in western equatorial Africa. We used linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results. Lopé’s weather is characterised by a light-deficient, cool, long dry season. Long-term climatic means have changed significantly over the last three decades, with warming occurring at a rate of 0.23°C per decade (minimum daily temperature) and drying at a rate of 50mm per decade (total annual rainfall). Inter-annual variability is highly influenced by sea surface temperatures of the major oceans. In El Niño years Lopé experiences both higher temperatures and less rainfall with increased contrast between wet and dry seasons. Lopé rainfall observations lend support for the role of the Atlantic cold tongue in “dry” models of climate change in the region. Conclusions. Dry season cloud in western equatorial Africa plays a key role in reducing evaporative demand during seasonal drought and maintaining evergreen tropical forests despite relatively low annual rainfall. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of clouds to ocean temperatures and the viability of humid forests in this dry region should the clouds disappear.


1997 ◽  
Vol 21 (1) ◽  
pp. 23-50 ◽  
Author(s):  
S.J. Mason ◽  
M.R. Jury

Quasi-periodicities in annual rainfall totals over southern Africa have been identified; in particular, an approximately 18-year cycle may be related to interdecadal variability in sea-surface temperatures in the eastern equatorial Pacific and central Indian Oceans. A 10-year cycle along the south coast is related to variability in standing wave 3. Atmospheric anomalies associated with wet and dry years can be related to changes in the frequency, intensity and persistence of important rainfall-producing weather systems and highlight the significance of the strength of the continental heat low and the preferred locations and amplitudes of the westerly troughs. El Niño Southern Oscillation events and sea-surface temperature anomalies in the Indian and South Atlantic Oceans can influence both the tropical and the temperate atmospheric circulation and moisture fluxes over the subcontinent and thus are significant influences on rainfall variability. Evidence for long-term climatic change is not as definitive as in the Sahel, although there are indications of desiccation in some areas since the late-1970s. Increases in temperatures are of approximately the same magnitude as the hemispheric trends and may be attributable to the enhanced greenhouse effect.


2021 ◽  
Author(s):  
Hao Xu ◽  
Xu Lian ◽  
Ingrid Slette ◽  
Hui Yang ◽  
Yuan Zhang ◽  
...  

Abstract The timing and length of the dry season is a key factor governing ecosystem productivity and the carbon cycle of the tropics. Mounting evidence has suggested a lengthening of the dry season with ongoing climate change. However, this conclusion is largely based on changes in precipitation (P) compared to its long-term average (P ̅) and lacks consideration of the simultaneous changes in ecosystem water demand (measured by potential evapotranspiration, Ep, or actual evapotranspiration, E). Using several long-term (1979-2018) observational datasets, we compared changes in tropical dry season length (DSL) and timing (dry season arrival, DSA, and dry season end, DSE) among three common metrics used to define the dry season: P < P ̅, P < Ep, and P < E. We found that all three definitions show that dry seasons have lengthened in much of the tropics since 1979. Among the three definitions, P < E estimates the largest fraction (49.0%) of tropical land area likely experiencing longer dry seasons, followed by P < Ep (41.4%) and P < P ̅ (34.4%). The largest differences in multi-year mean DSL (> 120 days) among the three definitions occurred in the most arid and the most humid regions of the tropics. All definitions and datasets consistently showed longer dry seasons in southern Amazon (due to delayed DSE) and central Africa (due to both earlier DSA and delayed DSE). However, definitions that account for changing water demand estimated longer DSL extension over those two regions. These results indicate that warming-enhanced evapotranspiration exacerbates dry season lengthening and ecosystem water deficit. Thus, it is necessity to account for the evolving water demand of tropical ecosystems when characterizing changes in seasonal dry periods and ecosystem water deficits in an increasingly warmer and drier climate.


2021 ◽  
pp. 232102222110514
Author(s):  
Kolawole Ogundari ◽  
Adebola Abimbola Ademuwagun ◽  
Ogechukwu Appah

The climatic change crisis has led to a renewed interest in understanding the dynamic of climatic variability over time. This is because rainfall variability in response to climate change poses a severe threat to global food security and agricultural production in general. As a result of this, the study investigates the convergence of rainfall variability in Nigeria. We use historical climate data on annual rainfall collected from meteorological stations across 12 states and covering 1992–2013. This gives rise to a balanced panel data of 12 states and 20 periods, which yields 240 observations. The study used a sigma convergence hypothesis test estimated using ordinary least square, fixed-effect and feasible generalized least square models. The coefficient of variation is taken as a measure of rainfall variability in the study. The results showed a negative (declining) linear correlation between rainfall’s coefficient of variation and data year. This means that rainfall variability decreased over time. This indicates evidence of convergence of rainfall, which means states with lower average annual rainfall are catching up on states with higher average annual rainfall over time. And, from the agricultural production standpoint, this result shows that the potential threat of rainfall variability to food security is not severe. In addition, it indicates a decrease in risk and uncertainty in food crop production associated with rainfall variability. JEL Classifications: O13, O55, Q10, Q54


2005 ◽  
Vol 5 (2) ◽  
pp. 311-335 ◽  
Author(s):  
B. Sauvage ◽  
V. Thouret ◽  
J.-P. Cammas ◽  
F. Gheusi ◽  
G. Athier ◽  
...  

Abstract. We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis) such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August). The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August) are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere.


Author(s):  
Dr. K. Rajendram

Due to recent climate changes and variability the frequency of occurrence and intensity of extreme climatic events such as flood, drought, etc. are increasing significantly in Sri Lanka. The main objectives of the study are to analyze the annual and seasonal rainfall variability in the last 147years from 1871-2018 with particular reference to drought and to assess the occurrence of droughts and its intensity and the impacts of drought on agriculture. For this secondary and primary data have been used. The long-term average annual rainfall of Mannar show the decreasing trend (r2= 0.0158), particularly in recent epochs higher negative anomalies of rainfall were found, as a results frequent occurrence of droughts or dry spells have been occurred. The rainfall anomaly results reveal that, out of 147years of the data period about 47years were experienced as drought and its probability is P=0.320. Accordingly, once in four to five years a drought could be possible. However, in the recent epoch of 1991-2018, higher number of droughts occurred than the any other epochs and its epochal probability is higher (P=0.40) than the normal, which indicate the effect of recent climate change.


2021 ◽  
Vol 16 (1) ◽  
pp. 115-122
Author(s):  
Solomon O. Amadi ◽  
Mfongang E. Agbor ◽  
Sunday O. Udo

In this study, Calabar annual total rainfall was analysed for trend and climatic variability events with focus on drought occurrence. Monthly rainfall data from in situ measurements over a 41 year period (1972-2012) were used for the study. Standard tests were used to evaluate the trends and variability in annual rainfall. Rainfall variability was estimated as standardized rainfall departures and used to identify and delimitate the dry and wet spell sequences of Calabar rainfall. The rainfall series were analysed for Standardized Precipitation Index (SPI) using SPSS Version 17 software. The least squares regression plot was executed using Excel 2010 to depict the trend, variability and regression parameters. The average annual rainfall for Calabar is 2984.64 mm with standard deviation of 394.9 mm. 36.59% of the period showed positive SPI while 63.41 % of the period indicated negative SPI values. Wet spell dominated the later part of the period but sandwiched with dry spells whereas dry spell were dominant from 1972 to 1994. The area experienced a non-significant upward trend of 15.21 mm per year over the interval. The SPI values indicate that Calabar experienced distinct inter-annual rainfall cycles that represent mild to extreme droughts and wet spells which are a demonstration of consequential annual rainfall variability. The results underscore the need for effective monitoring of Calabar rainfall for prompt warnings and responses that would guarantee effective risk reduction and management in the run-in to the occurrence of the extreme events. The paper further highlights the need for data-driven approach to policy making in water resources management. This would provide a fascinating insight into the improvement in long-term water resources management in the city and its suburbs.


2021 ◽  
Vol 22 (4) ◽  
pp. 509-517
Author(s):  
ADIKANT PRADHAN ◽  
T. CHANDRAKAR ◽  
S.K. NAG ◽  
A. DIXIT ◽  
S.C. MUKHERJEE

Analysis of long-term rainfall data (1986-2018) of Bastar region revealed decreasing trend in total quantum of annual rainfall with varying frequency and distribution. The quantity of winter and summer rains decreased drastically during 2008-18 as compared to earlier two decades (1986-96 and 1997-2007). SW monsoon rain of 2008-18 was more than past two decades, whereas NE monsoon rain changed much in quantity except during 1997-2007. During 1986-96, the pre-monsoon shower was received in April, but later two decades the shower was received in May, which supports for summer ploughing and dry aerobic seeding. The cropping period almost synchronized between 22-43 standard meteorological week (SMW) reaching 93.11 mm per week as maximum rainfall. As the probability of 20 mm rainfall decreased from 75 to 50%, the crop yield got reduced by 30%. The mid-land rice with a probability of 13.47 to 16.07 mm rain per week supported growth phase during 17-21SMW. Whereas, upland rice maturing in 90-100 days could avoid dry spells, if the rice is managed by conservation furrows at the time of sowing. The summer ploughing is preferred with more than 40 mm rain in single day during March to April for mitigating dry spells. On the other hand, preparatory tillage and sowing were performed together in support of ripening niger and horsegram under probability of 75, 50 and 25% rain through crop planning. Maize and small millets reduced yield  significantly when rainfall reached 75% deficit, whereas 25% deficit rain did not affect the yields.


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 571-582
Author(s):  
NAVNEET KAUR ◽  
ABRAR YOUSUF ◽  
M. J. SINGH

The trend analysis of historical rainfall data on monthly, annual and seasonal basis for three locations in lower Shivaliks of Punjab, viz., Patiala-ki-Rao (1982-2015), Ballowal Saunkhri (1987-2015) and Saleran (1984-2017) has been done in the present study using linear regression model, Mann Kendall test and Sen’s slope. Further, the data for annual and seasonal rainfall and rainy days has also been analyzed on quindecennial basis, i.e., for the period of 1986-2000 and 2001-2015. The analysis of data showed that annual rainfall in the region ranged from 1000 to 1150 mm. The trend analysis of the data shows that the monthly rainfall is decreasing at Patiala-ki-Rao and Saleran, however, the trend was significant for May at Patiala-ki-Rao; and in March and November at Saleran. At Ballowal Saunkhri, the decreasing trend is observed from May to October, however, the trend is significant only in August. The decrease in annual and monsoon rainfall is about 13 to 17 mm and 12 to 13 mm per year respectively at three locations in lower Shivaliks of Punjab. The highest annual (1600-2000 mm) and monsoon (1500-1800 mm) rainfall during the entire study period was recorded in the year 1988 at three locations. The decadal analysis of the data shows below normal rainfall during April to October. The analysis of the rainfall and rainy days on monthly, annual and seasonal averages of 15 year basis showed that both rainfall and rainy days have decreased during the 2001-2015 as compared to 1986-2000 during all the seasons of the year.


Sign in / Sign up

Export Citation Format

Share Document