scholarly journals Blue carbon of Mexico, carbon stocks and fluxes: a systematic review

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8790 ◽  
Author(s):  
Jorge A. Herrera-Silveira ◽  
Monica A. Pech-Cardenas ◽  
Sara M. Morales-Ojeda ◽  
Siuling Cinco-Castro ◽  
Andrea Camacho-Rico ◽  
...  

Mexico has more than 750,000 ha of mangroves and more than 400,000 ha of seagrasses. However, approximately 200,000 ha of mangroves and an unknown area of seagrass have been lost due to coastal development associated with urban, industrial and tourist purposes. In 2018, the approved reforms to the General Law on Climate Change (LGCC) aligned the Mexican law with the international objectives established in the 2nd Article of the Paris Agreement. This action proves Mexico’s commitment to contributing to the global target of stabilizing the greenhouse gas emissions concentration in the planet. Thus, restoring and conserving mangrove and seagrass habitats could contribute to fulfilling this commitment. Therefore, as a first step in establishing a mitigation and adaptation plan against climate change with respect to conservation and restoration actions of these ecosystems, we evaluated Mexican blue carbon ecosystems through a systematic review of the carbon stock using the standardized method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the data from 126 eligible studies for both ecosystems (n = 1220). The results indicated that information is missing at the regional level. However, the average above and below ground organic carbon stocks from mangroves in Mexico is 113.6 ± 5.5 (95% CI [99.3–118.4]) Mg Corg ha−1 and 385.1 ± 22 (95% CI [344.5–431.9]) Mg Corg ha−1, respectively. The variability in the Corg stocks for both blue carbon ecosystems in Mexico is related to variations in climate, hydrology and geomorphology observed along the country’s coasts in addition to the size and number of plots evaluated with respect to the spatial cover. The highest values for mangroves were related to humid climate conditions, although in the case of seagrasses, they were related to low levels of hydrodynamic stress. Based on the official extent of mangrove and seagrass area in Mexico, we estimate a total carbon stock of 237.7 Tg Corg from mangroves and 48.1 Tg Corg from seagrasses. However, mangroves and seagrasses are still being lost due to land use change despite Mexican laws meant to incorporate environmental compensation. Such losses are largely due to loopholes in the legal framework that dilute the laws’ effectiveness and thus ability to protect the ecosystem. The estimated emissions from land use change under a conservative approach in mangroves of Mexico were approximately 24 Tg CO2e in the last 20 years. Therefore, the incorporation of blue carbon into the carbon market as a viable source of supplemental finance for mangrove and seagrass protection is an attractive win-win opportunity.

Author(s):  
Vina Nurul Husna

Mangrove is one of the most intensive carbon sinks and plays a major role in the carbon cycle. However, the existence of mangrove is decreasing due to land use change that are not in accordance with its allocation, and disrupt the carbon cycle in the ecosystem. This study aims to estimate mangrove carbon stock using remote sensing technique in Tongke-tongke, South Sulawesi. Estimation using remote sensing usually has a low accuracy, therefore this research use multispectral (Landsat) and radar (PALSAR) sensor to increase the accuracy. Total carbon stocks in the study area based on model built for HH and HV polarization were 5662.85 ton and 6431.46 ton, respectively.


2014 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Supriadi Supriadi ◽  
Richardus F Kaswadji ◽  
Dietrich G Bengen ◽  
Malikusworo Hutomo

Konsep blue carbon yang diperkenalkan oleh UNEP, FAO dan UNESCO pada tahun 2009 memasukkan padang lamun sebagai salah satu ekosistem yang mempunyai peran dalam penyerapan karbon global. Karbon yang diserap disimpan dan dialirkan dalam beberapa kompartemen, antara lain di sedimen, herbivora, kolom air, ekosistem lain dan dalam bentuk biomassa. Penelitian dilakukan di Pulau Barranglompo, Makassar, untuk melihat potensi stok karbon yang tersimpan dalam biomassa lamun. Kepadatan lamun diukur dengan melakukan sampling menggunakan metode transek kuadrat dengan ukuran 50cm x 50cm. Sedangkan untuk biomassa dilakukan dengan transek 20cm x 20cm. Hubungan antara kepadatan, biomassa dan kandungan karbon dari lamun digunakan untuk menentukan jumlah stok karbon. Kepadatan lamun disurvei pada 236 titik, sedangkan untuk pengambilan sampel biomassa dilakukan pada 30 titik. Hasil penelitian menunjukkan bahwa komunitas lamun mempunyai total stok karbon sebesar 73,86 ton dari total luas padang lamun 64,3 ha. Karbon di bawah substrat sebesar 56,55 ton (76,3%), lebih tinggi dibanding karbon di atas substrat yang hanya 17,57 ton (23,7%). Jenis lamun Enhalus acoroides menyumbang lebih dari 70% terhadap total stok karbon. Berdasarkan kelas karbon, kontribusi terbesar ditemukan pada kelas 100-200 gC.m-2 sebesar 29,41 ton (39,7%). Hasil ini menunjukkan bahwa ekosistem lamun berperan sangat penting dalam menjaga stok karbon di laut sehingga perlu mendapatkan perhatian untuk konservasinya. Kata kunci: konsep blue karbon, lamun, Barranglompo   Blue carbon concept as introduced by UNEP, FAO and UNESCO in 2009 included seagrass beds as one ecosystem having a significant role in global carbon absorption. Absorbed carbon was stored and distributed in various compartments such as in sediments, herbivores, water column, other ecosystems and in form of biomass. The research was conducted in Barranglompo Island, Makassar City to analyze the potency of carbon stock that stored within seagrass biomass. Seagrass density was sampled using quadrat transect method with size of 50cm x 50cm. While for biomass was done by harvesting seagrass at transect of 20cm x 20cm in root penetration depth. Relationship between density, biomass and carbon content of seagrass were used to determine total carbon stock. Seagrass density was surveyed at 236 points, while for biomass sampling was conducted in 30 points. The results showed that seagrass community had total carbon stocks as much as 73.86 tonnes from overall 64.3 ha of seagrass bed areas.  Below ground carbon had 56.55 tonnes (76.3%), higher compared to that aboveground which only 17.57 tonnes (23.7%). Seagrass species Enhalus acoroides contributed more than 70% to the total carbon stocks, whereas, based on the carbon classes, the highest contribution was found at class 100-200 gC.m-2 i.e. 29.41 tonnes (39.7%). These results suggest that seagrass ecosystem plays an important role in maintaining the carbon stock in the ocean and should receive good attention for its conservation. Keywords: blue carbon concept, seagrass, Barranglompo


2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


2022 ◽  
Vol 9 (2) ◽  
pp. 3387-3396
Author(s):  
Diriba Megersa Soboka ◽  
Fantaw Yimer

This study was conducted to estimate carbon stock enhancement and climate change mitigation potential of restoration effort in Rebu Watershed, Woliso Woreda, Ethiopia. Two restored lands of thirteen years old were randomly selected from two kebeles. Biomass and soil data were collected systematically from nested plots. Mensuration of woody species, soil, and grass/litter samples was collected from the subplots of the nested plots. A total of 72 composite soil samples were collected. The results showed the positive impact of restoration activity on enhancing biomass and soil organic carbon stocks. The restored land ecosystem had shown higher carbon stock of (138.51 ± 27.34 t/ha) than the adjacent unrestored land ecosystem (101.43 ± 21.25 t/ha), which confirmed the potential of restoration in enhancing the carbon stock and mitigating climate change. Hence, the restored land use type has been stored about 8.37 t/ha of carbon dioxide equivalent (CO2e) in biomasses. The restored land use type has mitigated climate change (absorb CO2) by 7.7 times than the adjacent unrestored land use type in this study. The significant values in restored land use types were due to the enhanced vegetation and land cover, which contributed to the biomass and soil organic carbon accumulation. Moreover, the lower values in unrestored land use type were due to the continuous degradation and disturbance from livestock and human beings. Therefore, the result of this study showed that protecting the degraded lands from any disturbance could enhance the carbon stocks of the ecosystem and mitigate the carbon emission rate.


2020 ◽  
Author(s):  
Boris Tupek ◽  
Aleksi Lehtonen ◽  
Raisa Mäkipää ◽  
Pirjo Peltonen-Sainio ◽  
Saija Huuskonen ◽  
...  

<p>We aimed to estimate a nation-wide potential to improve the carbon balance of the land use sector by removing part of the current croplands on mineral soil from food and feed production to extensive grasslands or afforestation in Finland.  We combined the existing data on forest and agricultural production, and climate with predictive capacity of YASSO07 soil carbon model to estimate changes of soil carbon stock (SOC) in Finland over the past land use change (LUC) from forest to agriculture in comparison with alternative LUC or continuous agriculture in future.</p><p>The model analysis revealed that SOC loss after deforestation during the cultivation period originated mainly from the absence of woody litter input. The non-woody litter input of the forest was comparable to that of the agricultural residues thus the SOC originating from non-woody litter has not changed much during cultivation. The model estimated approximately a 30 year delay in positive soil carbon balance after the afforestation. Longer for Norway spruce than for the Pubescent birch. The comparison of two dominant tree species used for afforestation highlighted a difference in soil versus biomass carbon sequestration. The total forest biomass production and total carbon stock was larger for spruce stands than for birch stands. However, due to larger foliar and fineroot litter input birch stands sequestered more carbon into the soil than spruce stands. The analysis further revealed that extensification of cropland to grassland would not meet 4 per mill soil carbon sequestration criterion needed for achieving Paris climate CO2 reduction target and due to the spatial limitation of afforestation other management measures need to be considered e.g. adding biochar to soils for successful and more permanent CO2 offsetting.</p>


2017 ◽  
Vol 66 (1) ◽  
pp. 75-83
Author(s):  
Dixon T. Gevaña ◽  
Leni D. Camacho ◽  
Sofronio C. Camacho

AbstractBlue carbon pertains to carbon stock that is stored by marine ecosystems including mangrove forest. Density and blue carbon stock assessment was conducted covering matureRhizophora stylosaGriff. plantations in Bohol, Philippines. Three stand types were assessed: thinned mature stand (0.34 tree m−2at 55 years old; 35 ha); non-thinned mature stand (1.2 tree m−2at 55 years old; 20 ha) and young stand (2.6 tree m−2at 20 years old; 150 ha). These plantations were initially established with a plant spacing of 0.5 m × 0.5 m. Non-destructive plot sampling technique was used to account biomass and carbon stocks of trees and sediments. Five (5) sample plots measuring 200 m2were allocated for each stand type. Results showed that the total carbon stock of plantations amassed to 64.5 ktC or 236.6 ktCO2e. More than half (at least 54%) of this stock is imbedded in sediment. Individual accounts showed that carbon stock was largest in non-thinned stand with 435.2 tC ha−1, followed by thinned stand (408.5 tC ha−1) and young stand (276.8 tC ha−1). There was no significant difference between thinned and non-thinned mature stands carbon stocks. Such finding suggested the potential of having thinning intervention. Following the self-thinning rule of 1.1 to 1.3 tree m−2, the local community can harvest as much as 423 trees ha−1yr−1for 35 years starting at the plantation age of 20 years. Further, the additional carbon stock between the ages 20 to 55 years could reach about 580 tCO2e ha−1with an economic value of USD 2,962 ha−1. With this potential benefits, it is recommended that Banacon Island should pursue a carbon offset project for its plantations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Derrick R. Vaughn ◽  
Thomas S. Bianchi ◽  
Michael R. Shields ◽  
William F. Kenney ◽  
Todd Z. Osborne

Blue carbon habitats, such as mangroves and salt marshes, have been recognized as carbon burial hotspots; however, methods on measuring blue carbon stocks have varied and thus leave uncertainty in global blue carbon stock estimates. This study analyzes blue carbon stocks in northern Florida wetlands along the Atlantic and Gulf coasts. Carbon measurements within 1–3m length vibracores yield total core stocks of 9.9–21.5 kgC·m−2 and 7.7–10.9 kgC·m−2 for the Atlantic and Gulf coast cores, respectively. Following recent IPCC guidelines, blue carbon stock estimates in the top meter are 7.0 kgC·m−2–8.0 kgC·m−2 and 6.1 kgC·m−2–8.6 kgC·m−2 for the Atlantic and Gulf cores, respectively. Changes in stable isotopic (δ13C, C/N) and lignin biomarker (C/V) indices suggest both coastlines experienced salt marsh and mangrove transgressions into non-blue carbon habitats during the mid- to late-Holocene following relative sea-level rise. These transgressions impact carbon storage within the cores as the presence of carbon-poor soils, characteristic of non-blue carbon habitats, result in lower 1m carbon stocks in north Florida Gulf wetlands, and a deeper extent of carbon-rich soils, characteristic of blue carbon habitats, drive higher 1m and total carbon stocks in north Florida Atlantic wetlands. Future blue carbon research should assess carbon stocks down to bedrock when possible, as land-cover and/or climate change can impact different depths across localities. Ignoring carbon-rich soil below the top meter of soil may underestimate potential carbon emissions based on these changes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuchen Meng ◽  
Jiankun Bai ◽  
Ruikun Gou ◽  
Xiaowei Cui ◽  
Jianxiang Feng ◽  
...  

Abstract Background Although great efforts have been made to quantify mangrove carbon stocks, accurate estimations of below-ground carbon stocks remain unreliable. In this study, we examined the distribution patterns of mangrove carbon stocks in China and other countries using our own field survey data and datasets from published literature. Based on these data, we investigated the possible relationships between above-ground carbon stock (AGC) and below-ground carbon stock (BGC) for mangrove forests, aiming to provide a scientific basis for estimation of total mangrove carbon stocks. Results The average above-ground carbon stock in each region was sizeable (ranging from 12.0 to 150.2 Mg/ha), but average below-ground carbon stock was dominant (ranging from 46.6 to 388.6 Mg/ha), accounting for 69–91% of total carbon stock at the sites studied in China. Significant positive relationships were found between above-ground and below-ground mangrove carbon stocks, with the best fitting equation as BGC = 1.58 * AGC + 81.06 (Mg/ha, R2 = 0.62, p < 0.01, n = 122) for China. Such linear relationships vary for mangrove forests of different types and locations, from different geographical regions in China to other countries worldwide. Conclusion The positive relationship we found between above- and below-ground carbon stocks of mangrove forests in China and worldwide can facilitate more accurate assessments of mangrove blue carbon stocks at regional or global scales using modern techniques including remote sensing.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 124 ◽  
Author(s):  
Kangbéni Dimobe ◽  
Jean Kouakou ◽  
Jérôme Tondoh ◽  
Benewinde Zoungrana ◽  
Gerald Forkuor ◽  
...  

West African savannas are experiencing rapid land cover change that threatens biodiversity and affects ecosystem productivity through the loss of habitat and biomass, and carbon emissions into the atmosphere exacerbating climate change effects. Therefore, reducing carbon emissions from deforestation and forest degradation in these areas is critical in the efforts to combat climate change. For such restorative actions to be successful, they must be grounded on a clear knowledge of the extent to which climate change affects carbon storage in soil and biomass according to different land uses. The current study was undertaken in semi-arid savannas in Dano, southwestern Burkina Faso, with the threefold objective of: (i) identifying the main land use and land cover categories (LULCc) in a watershed; (ii) assessing the carbon stocks (biomass and soil) in the selected LULCc; and (iii) predicting the effects of climate change on the spatial distribution of the carbon stock. Dendrometric data (Diameter at Breast Height (DBH) and height) of woody species and soil samples were measured and collected, respectively, in 43 plots, each measuring 50 × 20 m. Tree biomass carbon stocks were calculated using allometric equations while soil organic carbon (SOC) stocks were measured at two depths (0–20 and 20–50 cm). To assess the impact of climate change on carbon stocks, geographical location records of carbon stocks, remote sensing spectral bands, topographic data, and bioclimatic variables were used. For projections of future climatic conditions, predictions from two climate models (MPI-ESM-MR and HadGEM2-ES) of CMIP5 were used under Representative Concentration Pathway (RCP) 8.5 and modeling was performed using random forest regression. Results showed that the most dominant LULCc are cropland (37.2%) and tree savannas (35.51%). Carbon stocks in woody biomass were higher in woodland (10.2 ± 6.4 Mg·ha−1) and gallery forests (7.75 ± 4.05 Mg·ha−1), while the lowest values were recorded in shrub savannas (0.9 ± 1.2 Mg·ha−1) and tree savannas (1.6 ± 0.6 Mg·ha−1). The highest SOC stock was recorded in gallery forests (30.2 ± 15.6 Mg·ha−1) and the lowest in the cropland (14.9 ± 5.7 Mg·ha−1). Based on modeling results, it appears clearly that climate change might have an impact on carbon stock at horizon 2070 by decreasing the storage capacity of various land units which are currently suitable. The decrease was more important under HadGEM2-ES (90.0%) and less under MPI-ESM-MR (89.4%). These findings call for smart and sustainable land use management practices in the study area to unlock the potential of these landscapes to sequestering carbon.


2020 ◽  
Vol 26 (5) ◽  
pp. 3028-3039 ◽  
Author(s):  
Sigit D. Sasmito ◽  
Mériadec Sillanpää ◽  
Matthew A. Hayes ◽  
Samsul Bachri ◽  
Meli F. Saragi‐Sasmito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document