scholarly journals Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas

Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 124 ◽  
Author(s):  
Kangbéni Dimobe ◽  
Jean Kouakou ◽  
Jérôme Tondoh ◽  
Benewinde Zoungrana ◽  
Gerald Forkuor ◽  
...  

West African savannas are experiencing rapid land cover change that threatens biodiversity and affects ecosystem productivity through the loss of habitat and biomass, and carbon emissions into the atmosphere exacerbating climate change effects. Therefore, reducing carbon emissions from deforestation and forest degradation in these areas is critical in the efforts to combat climate change. For such restorative actions to be successful, they must be grounded on a clear knowledge of the extent to which climate change affects carbon storage in soil and biomass according to different land uses. The current study was undertaken in semi-arid savannas in Dano, southwestern Burkina Faso, with the threefold objective of: (i) identifying the main land use and land cover categories (LULCc) in a watershed; (ii) assessing the carbon stocks (biomass and soil) in the selected LULCc; and (iii) predicting the effects of climate change on the spatial distribution of the carbon stock. Dendrometric data (Diameter at Breast Height (DBH) and height) of woody species and soil samples were measured and collected, respectively, in 43 plots, each measuring 50 × 20 m. Tree biomass carbon stocks were calculated using allometric equations while soil organic carbon (SOC) stocks were measured at two depths (0–20 and 20–50 cm). To assess the impact of climate change on carbon stocks, geographical location records of carbon stocks, remote sensing spectral bands, topographic data, and bioclimatic variables were used. For projections of future climatic conditions, predictions from two climate models (MPI-ESM-MR and HadGEM2-ES) of CMIP5 were used under Representative Concentration Pathway (RCP) 8.5 and modeling was performed using random forest regression. Results showed that the most dominant LULCc are cropland (37.2%) and tree savannas (35.51%). Carbon stocks in woody biomass were higher in woodland (10.2 ± 6.4 Mg·ha−1) and gallery forests (7.75 ± 4.05 Mg·ha−1), while the lowest values were recorded in shrub savannas (0.9 ± 1.2 Mg·ha−1) and tree savannas (1.6 ± 0.6 Mg·ha−1). The highest SOC stock was recorded in gallery forests (30.2 ± 15.6 Mg·ha−1) and the lowest in the cropland (14.9 ± 5.7 Mg·ha−1). Based on modeling results, it appears clearly that climate change might have an impact on carbon stock at horizon 2070 by decreasing the storage capacity of various land units which are currently suitable. The decrease was more important under HadGEM2-ES (90.0%) and less under MPI-ESM-MR (89.4%). These findings call for smart and sustainable land use management practices in the study area to unlock the potential of these landscapes to sequestering carbon.

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


2022 ◽  
Vol 9 (2) ◽  
pp. 3387-3396
Author(s):  
Diriba Megersa Soboka ◽  
Fantaw Yimer

This study was conducted to estimate carbon stock enhancement and climate change mitigation potential of restoration effort in Rebu Watershed, Woliso Woreda, Ethiopia. Two restored lands of thirteen years old were randomly selected from two kebeles. Biomass and soil data were collected systematically from nested plots. Mensuration of woody species, soil, and grass/litter samples was collected from the subplots of the nested plots. A total of 72 composite soil samples were collected. The results showed the positive impact of restoration activity on enhancing biomass and soil organic carbon stocks. The restored land ecosystem had shown higher carbon stock of (138.51 ± 27.34 t/ha) than the adjacent unrestored land ecosystem (101.43 ± 21.25 t/ha), which confirmed the potential of restoration in enhancing the carbon stock and mitigating climate change. Hence, the restored land use type has been stored about 8.37 t/ha of carbon dioxide equivalent (CO2e) in biomasses. The restored land use type has mitigated climate change (absorb CO2) by 7.7 times than the adjacent unrestored land use type in this study. The significant values in restored land use types were due to the enhanced vegetation and land cover, which contributed to the biomass and soil organic carbon accumulation. Moreover, the lower values in unrestored land use type were due to the continuous degradation and disturbance from livestock and human beings. Therefore, the result of this study showed that protecting the degraded lands from any disturbance could enhance the carbon stocks of the ecosystem and mitigate the carbon emission rate.


2012 ◽  
Vol 13 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Juan Albaladejo ◽  
Roque Ortiz ◽  
Noelia Garcia-Franco ◽  
Antonio Ruiz Navarro ◽  
Maria Almagro ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8790 ◽  
Author(s):  
Jorge A. Herrera-Silveira ◽  
Monica A. Pech-Cardenas ◽  
Sara M. Morales-Ojeda ◽  
Siuling Cinco-Castro ◽  
Andrea Camacho-Rico ◽  
...  

Mexico has more than 750,000 ha of mangroves and more than 400,000 ha of seagrasses. However, approximately 200,000 ha of mangroves and an unknown area of seagrass have been lost due to coastal development associated with urban, industrial and tourist purposes. In 2018, the approved reforms to the General Law on Climate Change (LGCC) aligned the Mexican law with the international objectives established in the 2nd Article of the Paris Agreement. This action proves Mexico’s commitment to contributing to the global target of stabilizing the greenhouse gas emissions concentration in the planet. Thus, restoring and conserving mangrove and seagrass habitats could contribute to fulfilling this commitment. Therefore, as a first step in establishing a mitigation and adaptation plan against climate change with respect to conservation and restoration actions of these ecosystems, we evaluated Mexican blue carbon ecosystems through a systematic review of the carbon stock using the standardized method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the data from 126 eligible studies for both ecosystems (n = 1220). The results indicated that information is missing at the regional level. However, the average above and below ground organic carbon stocks from mangroves in Mexico is 113.6 ± 5.5 (95% CI [99.3–118.4]) Mg Corg ha−1 and 385.1 ± 22 (95% CI [344.5–431.9]) Mg Corg ha−1, respectively. The variability in the Corg stocks for both blue carbon ecosystems in Mexico is related to variations in climate, hydrology and geomorphology observed along the country’s coasts in addition to the size and number of plots evaluated with respect to the spatial cover. The highest values for mangroves were related to humid climate conditions, although in the case of seagrasses, they were related to low levels of hydrodynamic stress. Based on the official extent of mangrove and seagrass area in Mexico, we estimate a total carbon stock of 237.7 Tg Corg from mangroves and 48.1 Tg Corg from seagrasses. However, mangroves and seagrasses are still being lost due to land use change despite Mexican laws meant to incorporate environmental compensation. Such losses are largely due to loopholes in the legal framework that dilute the laws’ effectiveness and thus ability to protect the ecosystem. The estimated emissions from land use change under a conservative approach in mangroves of Mexico were approximately 24 Tg CO2e in the last 20 years. Therefore, the incorporation of blue carbon into the carbon market as a viable source of supplemental finance for mangrove and seagrass protection is an attractive win-win opportunity.


Agromet ◽  
2010 ◽  
Vol 24 (2) ◽  
pp. 18 ◽  
Author(s):  
Antonio Alberto ◽  
Bambang Dwi Dasanto

<div>Land use and land cover in Cisadane Watershed are very vulnerable to switch over, which is caused by the </div><div>high rate of population growth.  Land use and land cover change cause the carbon stock changes. These changes were analysed using the logistic regression models, and in this analysis we used land use maps in 2001 and 2006. As many as 44 regression equations were developed with various values of determination coefficient (R</div><div>2</div><div>); 14% of the R</div><div>2</div><div> was less than 0.50, 29% was between 0.50 and 0.75, and 57% is than 0.75. Statistically, there were 31 equations suitable to generate landuse map in 2010, 2015, 2020, and 2025. The amount of carbon stocks in Cisadane Watershed until the year 2025 tend to decrease, so the sum of carbon emissions in the atmosphere increased. This was mainly due to conversion of forest area into other landuse types. Land use and land cover in Cisadane Watershed are very vulnerable to switch over, which is caused by the high rate of population growth.  Land use and land cover change cause the carbon stock changes. These changes were analysed using the logistic regression models, and in this analysis we used land use maps in 2001 and 2006. As many as 44 regression equations were developed with various values of determination coefficient (R2); 14% of the R2 was less than 0.50, 29% was between 0.50 and 0.75, and 57% is than 0.75. Statistically, there were 31 equations suitable to generate landuse map in 2010, 2015, 2020, and 2025. The amount of carbon stocks in Cisadane Watershed until the year 2025 tend to decrease, so the sum of carbon emissions in the atmosphere increased. This was mainly due to conversion of forest area into other landuse types. </div>


2021 ◽  
Vol 6 (1) ◽  
pp. p45
Author(s):  
Le Q. Hung ◽  
Vu T. P. Thao

We estimated the carbon emissions in the field of Land Use, Land Use Change, and Forestry (LULUCF) by using advanced technology to build the input data. Remote sensing, including satellite remote sensing and Unmanned Aerial Vehicles (UAV) with transparency, multi-time, and wide coverage characteristics, is useful in this area. The article focuses on the proposed regulations and building process of subjects in the land cover of the Vietnamese mainland following the guidance of the Intergovernmental Panel on Climate Change as applied to carbon emission estimation. We propose a process to estimate carbon emissions using the Agriculture and Land Use Greenhouse Gas Inventory software with input data extracted from the remote sensing images. An experiment on land cover change was carried out over ten years between 2006 and 2016 in the Central Highlands of Vietnam. The results obtained with remote sensing data classification for land cover categories achieved a reliability of 69% for the year 2006 and 66% for the year 2016. The carbon emission estimation data were checked and used in Vietnam’s biennial update report to the United Nations Framework Convention on Climate Change, including content and updated information on the greenhouse gas inventory.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Sign in / Sign up

Export Citation Format

Share Document