scholarly journals Exogenous hormones influence Brassica napus leaf cuticular wax deposition and cuticle function

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9264 ◽  
Author(s):  
Zheng Yuan ◽  
Youwei Jiang ◽  
Yuhua Liu ◽  
Yi Xu ◽  
Shuai Li ◽  
...  

Background Cuticular waxes cover plant surface and play important roles in protecting plants from abiotic and biotic stresses. The variations of wax deposition and chemical compositions under changing environments have been shown to be related to plant adaptations. However, it is still not clear whether the wax depositions could be adjusted to increase plant adaptations to stressed conditions. Methods In this study, exogenous methyl jasmonate (MeJA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid (SA) were applied to test their effects on cuticular wax deposition in two Brassica napus cultivars, Zhongshuang 9 (ZS9, low wax coverage ) and Yuyou 19 (YY19, high wax coverage). Next, we measured the water loss rate and the transcriptional expression of genes involved in wax biosynthesis as well as genes related to disease defense. Results Seven wax compound classes, including fatty acids, aldehydes, alkanes, secondary alcohols, ketones, and unbranched as well as branched primary alcohols, were identified in B. napus leaf wax mixtures. MeJA, SA and ACC treatments had no significant effect on total wax amounts in YY19, whereas ACC reduced total wax amounts in ZS9. Overall, hormone treatments led to an increase in the amounts of aldehydes and ketones, and a decrease of secondary alcohol in ZS9, whereas they led to a decrease of alkane amounts and an increase of secondary alcohol amounts in YY19. Concomitantly, both cultivars also exhibited different changes in cuticle permeability, with leaf water loss rate per 15 min increased from 1.57% (averaged across treatments) at 1.57% (averaged across treatments) at 15 min to 3.12% at 30 min for ZS9 (except for ACC treated plant) and decreased for YY19. MeJA-treated plants of both cultivars relatively had higher water loss rate per 15 min when compared to other treatments. Conclusion. Our findings that B. napus leaf wax composition and cuticle permeability are altered by exogenous SA, MeJA and ACC suggest that the hormone treatments affect wax composition, and that the changes in wax profiles would cause changes in cuticle permeability.

2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


2017 ◽  
Vol 12 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Zhijun Liu ◽  
Dongquan Wang ◽  
Xiaobi Wei ◽  
Liangliang Wang

Cement-stabilized macadam is the most widely used road base material in road engineering. The current study investigated the impact of fiber diameter on its performance. The authors prepared polyester fibers with diameters of 20, 35, 70, and 105 μm and added them to cement-stabilized macadam. Then, the indoor shrinkage tests and mechanical property tests at different ages were conducted. Then, the property changes of the polyester-reinforced cement-stabilized macadam were analysed. The water loss rate of the polyester-reinforced cement-stabilized macadam is subject to the combined influence of the “water loss surface effect” and “water loss porthole effect.” With increasing fiber diameter, the water loss surface effect becomes stronger, and the water loss porthole effect gradually decreases; thus, the overall effect transitions from the latter to the former. Moreover, the water loss rate shows an increasing trend of decreasing to its minimum. Therefore, with increasing fiber diameter, the average dry shrinkage coefficient of the polyester-reinforced cement-stabilized macadam first increases and then decreases, while the temperature shrinkage coefficients increase. The change in the fiber diameter does not significantly affect the compressive resilient modulus of the polyester-reinforced cement-stabilized macadam if the fiber content remains constant. These findings demonstrate the functional mechanism of the fiber diameter on the road performance of cement-stabilized macadam, thus improving our understanding of the road performance of the polyester-reinforced cement-stabilized macadam and laying a solid theoretical foundation for its many applications.


1998 ◽  
Vol 201 (21) ◽  
pp. 2945-2952 ◽  
Author(s):  
A E Williams ◽  
M R Rose ◽  
T J Bradley

We conducted concurrent measurements of rates of CO2 and H2O release from individual fruit flies Drosophila melanogaster taken from populations subjected to three different selective regimes: (1) populations selected for resistance to desiccation (D flies); (2) populations maintained as their controls (C flies); and (3) the ancestral populations of the D and C populations (O flies). In the D flies, water loss rates were significantly reduced, the standard error of the regression (SER) of the CO2 release pattern measured over the survival period of the flies was increased, and the ratio of CO2 loss to H2O loss (VCO2/VH2O) was increased. Correlations across all 15 populations from the three selection treatments indicate that survival time was negatively correlated with water loss rate, positively correlated with the SER of CO2 release and positively correlated with the VCO2/VH2O ratio. We did not, however, find a significant correlation between the SER of CO2 release and rates of water loss or the VCO2/VH2O ratio.


1998 ◽  
Vol 201 (21) ◽  
pp. 2953-2959 ◽  
Author(s):  
A E Williams ◽  
T J Bradley

We measured CO2 and H2O release from individual fruit flies from five populations of Drosophila melanogaster selected for resistance to desiccation (D flies). Our previous work found that these flies survive for an extended period in dry air, have an increase in the peak height and frequency of CO2 release, as measured by the standard error of a linear regression (SER) of CO2 release for the entire survival period, and have reduced water loss rates (VH2O) compared with their control or ancestor populations. In the present study, we examined the following respiratory characteristics: VCO2, VH2O, the SER of CO2 release and the ratio of VCO2 to VH2O in the D flies. Correlations between these characters were calculated in order to determine the effect of respiratory pattern on water loss. We found that, within the D flies, neither periodic release of CO2 nor an increased SER for CO2 release was associated with reduced water loss. In addition, an increased SER was positively correlated with both an increased water loss rate and a decreased survival time. Therefore, although selection for desiccation resistance leads to both an increased SER and a decreased rate of water loss in the D flies, the increased SER does not significantly reduce respiratory water loss.


Burns ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 877-885 ◽  
Author(s):  
Mieke Anthonissen ◽  
Jill Meirte ◽  
Peter Moortgat ◽  
Koen Maertens ◽  
Daniel Daly ◽  
...  

2012 ◽  
Author(s):  
Elazar Fallik ◽  
Robert Joly ◽  
Ilan Paran ◽  
Matthew A. Jenks

The fruit of pepper (Capsicum annuum) commonly wilts (or shrivels) during postharvest storage due to rapid water loss, a condition that greatly reduces its shelf life and market value. The fact that pepper fruit are hollow, and thus have limited water content, only exacerbates this problem in pepper. The collaborators on this project completed research whose findings provided new insight into the genetic, physiological, and biochemical basis for water loss from the fruits of pepper (Capsicum annuum and related Capsicum species). Well-defined genetic populations of pepper were used in this study, the first being a series of backcross F₁ and segregating F₂, F₃, and F₄ populations derived from two original parents selected for having dramatic differences in fruit water loss rate (very high and very low water loss). The secondly population utilized in these studies was a collection of 50 accessions representing world diversity in both species and cultivar types. We found that an unexpectedly large amount of variation was present in both fruit wax and cutin composition in these collections. In addition, our studies revealed significant correlations between the chemical composition of both the fruit cuticular waxes and cutin monomers with fruit water loss rate. Among the most significant were that high alkane content in fruit waxes conferred low fruit water loss rates and low permeability in fruit cuticles. In contrast, high amounts of terpenoids (plus steroidal compounds) were associated with very high fruit water loss and cuticle permeability. These results are consistent with our models that the simple straight chain alkanes pack closely together in the cuticle membrane and obstruct water diffusion, whereas lipids with more complex 3-dimensional structure (such as terpenoids) do not pack so closely, and thus increase the diffusion pathways. The backcross segregating populations were used to map quantitative trait loci (QTLs) associated with water loss (using DART markers, Diversity Arrays Technology LTD). These studies resulted in identification of two linked QTLs on pepper’s chromosome 10. Although the exact genetic or physiological basis for these QTLs function in water loss is unknown, the genotypic contribution in studies of near-isogenic lines selected from these backcross populations reveals a strong association between certain wax compounds, the free fatty acids and iso-alkanes. There was also a lesser association between the water loss QTLs with both fruit firmness and total soluble sugars. Results of these analyses have revealed especially strong genetic linkages between fruit water loss, cuticle composition, and two QTLs on chromosome 10. These findings lead us to further speculate that genes located at or near these QTLs have a strong influence on cuticle lipids that impact water loss rate (and possibly, whether directly or indirectly, other traits like fruit firmness and sugar content). The QTL markers identified in these studies will be valuable in the breeding programs of scientists seeking to select for low water loss, long lasting fruits, of pepper, and likely the fruits of related commodities. Further work with these newly developed genetic resources should ultimately lead to the discovery of the genes controlling these fruit characteristics, allowing for the use of transgenic breeding approaches toward the improvement of fruit postharvest shelf life.


HortScience ◽  
1993 ◽  
Vol 28 (12) ◽  
pp. 1182-1184 ◽  
Author(s):  
N.K. Lownds ◽  
M. Banaras ◽  
P.W. Bosland

Physical characteristics [initial water content, surface area, surface area: volume (SA: V) ratio, cuticle weight, epicuticular wax content, and surface morphology] were examined to determine relationships between physical properties and water-loss `rate in pepper fruits. `Keystone', `NuMex R Naky', and `Santa Fe Grande' peppers, differing in physical characteristics, were stored at 8, 14, or 20C. Water-loss rate increased linearly with storage time at each temperature and was different for each cultivar. Water-loss rate was positively correlated with initial water content at 14 and 20C, SA: V ratio at all temperatures, and cuticle thickness at 14 and 20C. Water-loss rate was negatively correlated with surface area and epicuticular wax content at all temperatures. Stomata were absent on the fruit surface, and epicuticular wax was amorphous for each cultivar.


Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing non-stomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss; while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. GC-MS analysis identified a characteristic decrease in the accumulation of certain waxes (e.g. alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. FTIR spectroscopy also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress, and are promising genetic targets of interest.


2005 ◽  
Vol 130 (5) ◽  
pp. 735-741 ◽  
Author(s):  
Maalekuu Kissinger ◽  
Sharon Tuvia-Alkalai ◽  
Yavin Shalom ◽  
Elazar Fallik ◽  
Yonatan Elkind ◽  
...  

Fruit of pepper (Capsicum annuum L.) is hollow by nature, which limits its water reservoir capacity, and as such, small amounts of water loss result in loss of freshness and firmness, which reduce fruit quality, shelf life, and market value. In order to understand the basis for water loss from fruit, 10 pepper accessions with wide variation in water loss rate were used to study physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. Postharvest water loss rate in ripe pepper fruit stored at 20 °C, and 85% relative humidity, was found to be associated with cell membrane ion leakage, lipoxygenase activity, and total cuticular wax amount. Total cuticular wax amounts were highest in the high-water-loss pepper fruit, and lowest in the low-water-loss fruit. However, total cuticle amount (isolated enzymatically and quantified gravimetrically), total cutin monomer amount, and the amount of individual cutin monomer and wax constituents (determined using gas chromatography mass spectrometry) indicated no direct association with postharvest water loss rates. Fruit fresh weight, pericarp weight, pericarp surface area, pericarp thickness, initial water content, and dry matter were highly associated with each other, but less so with water loss rate. Fruit of accessions displaying high fruit water loss rate matured and ripened earlier than fruit of accessions displaying low-water-loss rate. Cell membrane ion leakage and lipoxygenase activity were higher after storage than immediately after harvest. Pepper fruit total cuticle wax amount, lipoxygenase activity, and cell membrane ion leakage were directly related to postharvest water loss rate in pepper fruit during storage.


Sign in / Sign up

Export Citation Format

Share Document