scholarly journals Variability of Soil Properties along Selected Transects in Mt. Makiling Forest Reserve, Philippines

Author(s):  
Nicola Louise T. Timbas ◽  
Rodrigo B. Badayos ◽  
Pearl B. Sanchez ◽  
Pompe C. Sta. Cruz

A study was conducted to determine the variability of soil properties along selected transects in Mt. Makiling Forest Reserve, Laguna, Philippines. Samples were taken from seven pedons at the northeastern slope, and six pedons at the southern slope. Morphological properties of soils were investigated in situ. Samples were analyzed for their chemical and physical properties. Four landscape positions were identified at the northeastern slope: interfluve, seepage slope, transportational midsope, and colluvial footslope. At the southern slope, three landscape positions were established: interfluve, transportational midslope and colluvial footslope. Soils at the interfluve in both transects had deep soil profiles with low bulk densities and high organic matter. Soils at the seepage slope have argillic horizons, higher soil pH, exchangeable bases, and base saturation. Lithologic discontinuities were observed at the transportational midslope. Soils at the colluvial footslope of the southern slope have higher soil pH, OM content, exchangeable bases, CEC, and base saturation compared to soils at the northeastern slope. Soils at the northeastern slope were classified as Andisols, Inceptisols, Entisols, Ultisols, and Alfisols. On the other hand, soils at the southern slope were classified as Andisols, Alfisols, and Inceptisols.

2017 ◽  
Vol 68 (3) ◽  
pp. 149-154 ◽  
Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski

Abstract The study has been undertaken in order to determine the influence of different substances (manure, clay, charcoal, zeolite and calcium oxide) on soil pH, hydrolytic acidity, total exchangeable bases, cation exchange capacity, the base saturation of soil contaminated with cobalt (0, 20, 40, 80, 160, 320 mg·kg−1 of soil). The analysed properties of soil proved to be dependent on the cobalt contamination and the kind of substances. In the series without substances soil contamination with the highest doses of cobalt raised the soil’s hydrolytic acidity but depressed its pH, total exchangeable bases and base saturation. Among the substances applied to soil in order to neutralize the effect of contamination with cobalt, calcium oxide had the strongest influence on the soil’s properties. In the series with calcium oxide application the hydrolytic acidity was decreased and other soil properties were increased. Manure addition to soil had positive but weaker effect on analysed soil properties.


Author(s):  
Man Liu ◽  
Guilin Han ◽  
Xiaoqiang Li ◽  
Shitong Zhang ◽  
Wenxiang Zhou ◽  
...  

Soil erosion has become a serious ecological problem in many catchments. Soil erodibility K factor can be estimated based on a series of soil properties, however, the identification of dominant soil properties that affect K factor prediction at different soil types has been little concerned. In this study, 3 soil profiles from the Jiulongjiang River Catchment (JRC) of granite region in Fujian province and 18 soil profiles from the Chenqi Catchment (CC) of karst region in Guizhou province were selected. Soil properties, including soil particle size distribution, soil organic carbon (SOC) and soil organic nitrogen (SON) content, and soil pH, were determined, and the K factors were estimated in the erosion productivity impact calculator (EPIC) model. The soils in the granite region were characteristic for coarse texture, low SOC and SON, and strong acidity compared with limestone soils. Although the K factors in both regions ranged from 0.009 to 0.018, they were overestimated in limestone soils due to frequent soil aggregation, which enhanced soil permeability, hence reduced soil erodibility. The results of principal component analysis (PCA) and structural equation model (SEM) showed that (1) K factor estimation in the soils of the granite region mainly depended on soil texture, of which silt was the most important factor; (2) while K factor in limestone soils was mainly controlled by soil organic matter (SOM) content, other soil properties, including soil pH, clay and silt contents, could indirectly affect prediction of K factor by affecting SOM accumulation.


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Izwaida Che Adanan ◽  
Mohd Effendi Wasli ◽  
Mugunthan Perumal ◽  
Soo Ying Ho

Abstract. Adanan IC, Wasli ME, Perumal M, Ying HS. 2020. Characterization of soil properties in relation to Shorea macrophylla growth performance under sandy soils at Sabal Forest Reserve, Sarawak, Malaysia. Biodiversitas 21: 1467-1475. A study was conducted in the Sabal Forest Reserve, Sarawak, to characterize soil properties in terms of soil morphological and physicochemical properties under sandy soil at the reforestation site in comparison with High Conservation Forest soil as well as to assess growth performance of planted S. macrophylla under the sandy soil. Study sites with the size of 25 m x 25 m were established under reforestation sites (Early Establishment of Reforestation Site (ER) and Late Establishment of Reforestation Site (LR)) as well as the High Conservation Forests (HCF-1 and HCF-2). The results from soil morphological properties showed that the soils in ER and HCF-2 plots resemble Saratok series while soils in LR and HCF-1 plot were classified into Buso series. As for soil physicochemical properties, soil in all study sites were strongly acidic in nature with pH (H2O) value less than 5.00 with sandy (more than 55%) at both surface and subsurface soil. The survival percentage of planted S. macrophylla in ER and LR plot was 65 % and 56%, respectively. Long term monitoring on soil properties and growth performance of planted S.marophylla tree are essential in order to continuously provide information on the status of reforestation activity.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski

AbstractThe aim of the study was to determine the influence of increasing cobalt soil contamination (0 mg·kg−1, 20 mg·kg−1, 40 mg·kg−1, 80 mg·kg−1, 160 mg·kg−1, 320 mg·kg−1) after the application of neutralising substances on selected soil properties. In the soil without an addition of neutralising substances, the highest doses of cobalt caused the pH, total exchangeable bases, cation exchange capacity and the degree of base saturation to decrease and the hydrolytic acidity of soil to increase. Among the substances used, zeolite and calcium oxide (particularly) had the most advantageous influence on the analysed soil properties. They caused the pH, total exchangeable bases and cation exchange capacity to increase and the hydrolytic acidity to decrease. Among the other substances, it was charcoal that had the greatest influence on the soil properties, but the way it influenced the total exchangeable bases, the cation exchange capacity of soil and the degree of base saturation were opposite to the way calcium oxide influenced these properties.


1975 ◽  
Vol 39 (6) ◽  
pp. 1220-1223
Author(s):  
K. M. Holtzclaw ◽  
J. M. Rible ◽  
P. F. Pratt
Keyword(s):  

2020 ◽  
Vol 17 ◽  
Author(s):  
Elham Khodaverdi ◽  
Farhad Eisvand ◽  
Mohammad Sina Nezami ◽  
Seyedeh Nesa Rezaeian Shiadeh ◽  
Hossein Kamali ◽  
...  

Background:: Doxycycline (DOX) is used in treating a bacterial infection, especially for periodontitis treatment. Objective: To reduce irritation of DOX for subgingival administration and increase the chemical stability and against enzy-matic, the complex of α-cyclodextrin with DOX was prepared and loaded into injectable in situ forming implant based on PLGA. Methods:: FTIR, molecular docking studies, X-ray diffraction, and differential scanning calorimetry was performed to char-acterize the DOX/α-cyclodextrin complex. Finally, the in-vitro drug release and modeling, morphological properties, and cellular cytotoxic effects were also evaluated. Results:: The stability of DOX was improved with complex than pure DOX. The main advantage of the complex is the al-most complete release (96.31 ± 2.56 %) of the drug within 14 days of the implant, whereas in the formulation containing the pure DOX and the physical mixture the DOX with α-cyclodextrin release is reached to 70.18 ± 3.61 % and 77.03 ± 3.56 %, respectively. This trend is due to elevate of DOX stability in the DOX/ α-cyclodextrin complex form within PLGA implant that confirmed by the results of stability. Conclusion:: Our results were indicative that the formulation containing DOX/α-cyclodextrin complex was biocompatible and sustained-release with minimum initial burst release.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Gabriel Soropa ◽  
Olton M. Mbisva ◽  
Justice Nyamangara ◽  
Ermson Z. Nyakatawa ◽  
Newton Nyapwere ◽  
...  

AbstractA study was conducted to examine spatial variability of soil properties related to fertility in maize fields across varying soil types in ward 10 of Hurungwe district, Zimbabwe; a smallholder farming area with sub-humid conditions and high yield potential. Purposively collected and geo-referenced soil samples were analyzed for texture, pH, soil organic carbon (OC), mineral N, bicarbonate P, and exchangeable K. Linear mixed model was used to analyze spatial variation of the data. The model allowed prediction of soil properties at unsampled sites by the empirical best linear unbiased predictor (EBLUP). Evidence for spatial dependence in the random component of the model was evaluated by calculating Akaike’s information criterion. Soil pH ranged from 4.0 to 6.9 and showed a strong spatial trend increasing from north to south, strong evidence for a difference between the home and outfields with homefields significantly higher and between soil textural classes with the sand clay loam fraction generally higher. Soil OC ranged from 0.2 to 2.02% and showed no spatial trend, but there was strong evidence for a difference between home and outfields, with mean soil OC in homefields significantly larger, and between soil textural classes, with soil OC largest in the sandy clay loams. Both soil pH and OC showed evidence for spatial dependence in the random effect, providing a basis for spatial prediction by the EBLUP, which was presented as a map. There were significant spatial trends in mineral N, available P and exchangeable K, all increasing from north to south; significant differences between homefields and outfields (larger concentrations in homefields), and differences between the soil textural classes with larger concentrations in the sandy clay loams. However, there was no evidence for spatial dependence in the random component, so no attempt was made to map these variables. These results show how management (home fields vs outfields), basic soil properties (texture) and other factors emerging as spatial trends influence key soil properties that determine soil fertility in these conditions. This implies that the best management practices may vary spatially, and that site-specific management is a desirable goal in conditions such as those which apply in Ward 10 of Hurungwe district in Zimbabwe.


1972 ◽  
Vol 52 (3) ◽  
pp. 427-438 ◽  
Author(s):  
A. J. MacLEAN ◽  
R. L. HALSTEAD ◽  
B. J. FINN

Liming of six acid soil samples in an incubation experiment with rates to raise the soil pH to 6.0 or above eliminated Al soluble in 0.01 M CaCl2, reduced soluble Mn and Zn, increased NO3-N markedly, and at the highest pH increased the amounts of NaHCO3-soluble P in some of the soils. In corresponding pot experiments, liming increased the yield of alfalfa and in three of the soils the yield of barley also. Liming reduced the concentrations of the metals in the plants and at the highest pH tended to increase the P content of the plants. Liming to a pH of about 5.3 eliminated or greatly reduced soluble Al and the soils were base saturated as measured by the replacement of Al, Ca, and Mg by a neutral salt. There was some evidence that liming to reduce soluble Al and possibly Mn was beneficial for plant growth. Gypsum increased the concentrations of Al, Mn, and Zn in 0.01 M CaCl2 extracts of the soils whereas phosphate reduced them. The changes in the Mn content of the plants following these treatments were in agreement with the amounts of Mn in the CaCl2 extracts.


Sign in / Sign up

Export Citation Format

Share Document