Analysis of Radiator Cooling Effects According to the Vertical-Horizontal Fan Arrangement

Author(s):  
Jang-Hyeok Yun ◽  
Jae-Chul Lee ◽  
Tae-Won Kang ◽  
Min-Jae Lee ◽  
Jong-Su Jeon ◽  
...  
Keyword(s):  
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 572
Author(s):  
Daisuke Narumi ◽  
Ronnen Levinson ◽  
Yoshiyuki Shimoda

Urban air temperature rises induced by the urban heat island (UHIE) effect or by global warming (GW) can be beneficial in winter but detrimental in summer. The SCIENCE-Outdoor model was used to simulate changes to sensible heat release and CO2 emissions from buildings yielded by four UHIE countermeasures and five GW countermeasures. This model can evaluate the thermal condition of building envelope surfaces, both inside and outside. The results showed that water-consuming UHIE countermeasures such as evaporative space cooling and roof water showering provided positive effects (decreasing sensible heat release and CO2 emissions related to space conditioning) in summer. Additionally, they had no negative (unwanted cooling) effects in winter since they can be turned off in the heating season. Roof greening can provide the greatest space- conditioning CO2 emissions reductions among four UHIE countermeasures, and it reduces the amount of heat release slightly in the heating season. Since the effect on reducing carbon dioxide (CO2) emissions by UHIE countermeasures is not very significant, it is desirable to introduce GW countermeasures in order to reduce CO2 emissions. The significance of this study is that it constructed the new simulation model SCIENCE-Outdoor and applied it to show the influence of countermeasures upon both heat release and CO2 emissions.


Author(s):  
Moon S. Chung ◽  
Alexander Mayer ◽  
Brock L. Weiss ◽  
Nicholas M. Miskovsky ◽  
Paul H. Cutler

2006 ◽  
Vol 19 (13) ◽  
pp. 3055-3069 ◽  
Author(s):  
Peter A. Stott ◽  
John F. B. Mitchell ◽  
Myles R. Allen ◽  
Thomas L. Delworth ◽  
Jonathan M. Gregory ◽  
...  

Abstract This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with very different sensitivities and aerosol forcing are carried out. The Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3), Parallel Climate Model (PCM), and GFDL R30 models all provide good simulations of twentieth-century global mean temperature changes when they include both anthropogenic and natural forcings. Such good agreement could result from a fortuitous cancellation of errors, for example, by balancing too much (or too little) greenhouse warming by too much (or too little) aerosol cooling. Despite a very large uncertainty for estimates of the possible range of sulfate aerosol forcing obtained from measurement campaigns, results show that the spatial and temporal nature of observed twentieth-century temperature change constrains the component of past warming attributable to anthropogenic greenhouse gases to be significantly greater (at the 5% level) than the observed warming over the twentieth century. The cooling effects of aerosols are detected in all three models. Both spatial and temporal aspects of observed temperature change are responsible for constraining the relative roles of greenhouse warming and sulfate cooling over the twentieth century. This is because there are distinctive temporal structures in differential warming rates between the hemispheres, between land and ocean, and between mid- and low latitudes. As a result, consistent estimates of warming attributable to greenhouse gas emissions are obtained from all three models, and predictions are relatively robust to the use of more or less sensitive models. The transient climate response following a 1% yr−1 increase in CO2 is estimated to lie between 2.2 and 4 K century−1 (5–95 percentiles).


1976 ◽  
Vol 40 (2) ◽  
pp. 127-131 ◽  
Author(s):  
J. LeBlanc ◽  
B. Blais ◽  
B. Barabe ◽  
J. Cote

Skin temperature measurements of the face have shown that the cheek cools faster than the nose and the nose faster than the forehead. The cooling effect of wind is maximum at wind speeds between 4.5 and 6.7 m/s. Cold winds produce significant bradycardia, which is, however, much more pronounced during the expiratory phase of respiration. A significant correlation was noted between cooling of face and the reflex bradycardia observed. Similarly, a very significant correlation was noted between drop in skin temperature and subjective evaluation of cold discomfort. Consequently, the drop in skin temperature, reflex bradycardia, and subjective evaluation are parameters which are directly affected by cold wind and can be used as adequate indicators of the degree of discomfort. When comparing the present results with the windchill index, it was found that in the zone described as “dangerously cold” the index fits well with the physiological measurements. In the zone described as “bitterly cold,” the index by comparison with actual skin temperature measurements and subjective evaluation underestimates the cooling effects of combined temperature and wind by approximately 10 degrees C.


2021 ◽  
Author(s):  
Zhe Zhang ◽  
Fei Chen ◽  
Michael Barlage ◽  
Lauren E Bortolotti ◽  
James Famiglietti ◽  
...  

2022 ◽  
Vol 209 ◽  
pp. 108663
Author(s):  
Dan Song ◽  
Xu Zhang ◽  
Xin Zhou ◽  
Xing Shi ◽  
Xing Jin

1994 ◽  
Vol 38 ◽  
pp. 393-400
Author(s):  
Shigeki KOBATAKE ◽  
Yoshihiko SHIMIZU ◽  
Ritsuko AOKI ◽  
Fumika HAYASAKA ◽  
You ANDOU

Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.


2018 ◽  
Vol 40 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Irfan Ahmad Gondal

This study presents an innovative concept of a compact integrated solar-thermoelectric module that can form part of the building envelope. The heating/cooling modes use the photovoltaic electrical current to power the heat pump. The experimental analysis was carried out and the results of coefficient of performance were in the range 0.5–1 and 2.6–5 for cooling and heating functions, respectively. The study demonstrates that thermoelectric cooler can effectively be used for heating, ventilation, and air conditioning applications by integrating with solar panels especially in cooling applications. The system is environmentally friendly and can contribute in the implementation of zero energy buildings concept. Practical application: In order to help address the challenge of climate change and associated environmental effects, there is continuous demand for new technologies and applications that can be readily integrated into day-to-day life as a means of reducing anthropogenic impact. Heating, ventilation, and air conditioning, as one of the largest energy consumers in buildings, is the focus of many researchers seeking to reduce building energy use and environmental impact. This article proposes using facades and windows that have an integrated modules of solar photovoltaic cells and thermoelectric devices that are able to work together to achieve heating and cooling effects as required by the building without requiring any external operational power.


Sign in / Sign up

Export Citation Format

Share Document