scholarly journals Effect of Growth and Yield of Wheat, Soil Properties on Leguminous Cover Crops-Wheat Mixtures

2012 ◽  
Vol 45 (2) ◽  
pp. 198-203 ◽  
Author(s):  
Weon-Tai Jeon ◽  
Ki-Yeong Seong ◽  
Gye-Jeong Oh ◽  
Hyun-Bok Lee ◽  
Min-Tae Kim ◽  
...  
2017 ◽  
Vol 35 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Roberto BF Branco ◽  
Sally F Blat ◽  
Tais GS Gimenes ◽  
Rodrigo HD Nowaki ◽  
Humberto S Araújo ◽  
...  

ABSTRACT The production of horticultural crops in no-tillage and in rotation with cover crops reduces the dependency in nitrogen fertilizer, due to increased soil organic matter and by biological fixation performed by legumes. Thus, the aim of this work was to study rates of nitrogen fertilization and cover crops in the agronomic performance of tomato and broccoli grown under no-tillage. The experiment was conducted in a split plot design with four replications. Treatments consisted of cover crops, sunn hemp and millet, and four rates of nitrogen fertilization (0, 50, 100 and 200 kg/ha of nitrogen), for both the tomato and broccoli crops. All soil management was performed in no-tillage. For tomato crops we evaluated the plant growth, the nitrate concentration of sprouts and fruits and yield of commercial and non commercial fruits. For broccoli we evaluated plant growth and yield. There was an interaction effect between cover crop and nitrogen rates to tomato growth measured at 100 days after transplanting, for plant height, number of fruit bunches, dry mass of leaves and diameter of the stalk. The tomato commercial fruit number and yield showed maximum values with 137 and 134 kg/ha of N respectively, on the sunn hemp straw. The nitrate concentration of the tomato sprouts was linearly increasing with the increase of nitrogen rates, when grown on the millet straw. For broccoli production, the maximum fresh mass of commercial inflorescence was with 96 kg/ha of N, when grown on the millet straw.


1996 ◽  
Vol 121 (3) ◽  
pp. 586-591 ◽  
Author(s):  
Vasey N. Mwaja ◽  
John B. Masiunas ◽  
Catherine E. Eastman

The effect of cover-crop management on growth and yield of `Bravo' cabbage (Brassica oleracea var. Capitata L.), `Market Pride' tomato (Lycopersicon esculentum Mill.), and `Mustang' snap bean (Phaseolus vulgaris L.) was determined. Each fall, `Wheeler' winter rye (Secale cereale L.) and `Oregon Crown' hairy vetch (Vicia villosa Roth) were interseeded. The following spring, the cover crops were killed by either applying glyphosate and mowing (CC-G) or mowing and disking (CC-D). Trifluralin was preplant incorporated into bare ground as a conventional tillage (CT) treatment. In 1992 and 1993, a chicken (Gallus gallus L.) based fertilizer was applied to half the subplots. The greatest snap bean and cabbage yields were in CT. The system with the greatest tomato yields varied. In 1991, the greatest tomato yields were in the CT treatment, while in 1992 yields were greatest in the CT and CC-D treatments, and in 1993 the greatest yields were in CT and CC-G. Cabbage yields were greater in the fertilized than the unfertilized treatments. In 1992, infestations of diamondback moth, imported cabbageworm, and cabbage looper were greater in CT than in the CC-G treatment. Three years of the CC-G treatment increased soil organic matter from 3.07% to 3.48% and increased soil pH from 6.30 to 6.51, while neither changed in the CT. Chemical names used: N-(phosphonomethyl) glycine (glyphosate); 2,6-dinitro-N,N-dipro`pyl-4-(trifluoromethyl) benzenamine (trifluralin).


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 795
Author(s):  
Robert P. Larkin

The potential benefits of different types of soil amendments and mulch ground covers on soil chemical and biological properties, crop development and yield, and disease and pest issues in organic vegetable production, as represented by legume (green snap bean), cucurbit (green zucchini squash), and brassicaceous (turnip) vegetable crops, were evaluated in a two-year field trial in Maine, USA. Soil amendments evaluated (following an initial fertilizer base) included a commercial organic fertilizer alone, composted dairy manure, compost plus fish meal, and compost plus Wollastonite, a natural source of silicon (Si). A paper mulch was also compared with a woven polypropylene fabric mulch for their performance and effects as weed barriers within these systems. Mulch type significantly affected soil properties, with the fabric mulch associated with increases in soil moisture, organic matter, and other soil chemical and biological properties relative to the paper mulch. The fabric mulch also resulted in earlier emergence and earlier harvests for bean and zucchini. Soil amendments affected soil properties and crop growth and yield of bean and zucchini, with compost amendments increasing soil pH, organic matter, and several nutrient concentrations, as well as crop emergence and yield relative to a fertilizer-only treatment. Compost treatment also reduced the infestation and damage caused by mites on beans in 2018. Addition of fish meal increased most nutrient element concentrations and microbial respiration, and Si amendment increased emergence of beans, and reduced powdery mildew on squash and late season browning of beans. These results help define specific management practices to improve organic vegetable production and provide useful information and options for growers.


2020 ◽  
Vol 62 (4) ◽  
pp. 429-435
Author(s):  
Svetlana M. Paunović ◽  
Mira Milinković ◽  
Marijana Pešaković

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2005
Author(s):  
Jacek Długosz ◽  
Anna Piotrowska-Długosz ◽  
Karol Kotwica ◽  
Ewelina Przybyszewska

The application of various conditioners in agriculture is one of the management practices used to improve soil quality and plant growth and development. The aim of this study was to assess the effect of a multi-component conditioner on the selected soil properties and maize (Zea mays L.) growth and yield. The effect of a conditioner on a set of soil properties and maize growth and yield was studied in one-year experiments carried out at three study sites, which were under a conventional tillage system. All of the study sites were located on farms in three geographic mezoregions in the Kuyavian-Pomeranian Region (Midwestern Poland). The studied soils were Haplic Luvisol (Janocin and Kobylnica) and Albic Luvisols (Krukówko) that were composed of sandy loam. A one-way analysis of variance (ANOVA) was used to determine the effect of a conditioner Solactiv on the soil and plant properties. The conditioner significantly affected the soil enzyme activities such as dehydrogenase (DHA), fluorescein sodium salt hydrolysis level (FDAH) and carboxymethylcellulose cellulase (CMC—cellulase); wherein the last one increased by about 16–20%. The application of Solactiv also increased the available K content (about 11%) but not the content of the microbial biomass C and N. Total porosity (TP), which was significantly higher in the soil treated with conditioner than in the control soils, increased the available water capacity (AWC) (about 2.2%). The higher AWC in the treated soil indicated the greater contribution of the mesopores in the TP (about 4%). A significantly higher readily available water capacity (RAWC) and small pores available water capacity (SAWC) was determined in the treated soils compared to the controls. Of the plant properties, only plant height, fresh cob biomass (BBCH 87–89) and fresh plant biomass (BBCH 84–85) were significantly increased by the conditioner. The application of Solactiv is considered to be a promising approach for developing sustainable agriculture by improving the soil’s biological activity and water-related properties.


2019 ◽  
Vol 111 (2) ◽  
pp. 482-495 ◽  
Author(s):  
Lili Zhao ◽  
Lusheng Li ◽  
Huanjie Cai ◽  
Junliang Fan ◽  
Henry Wai Chau ◽  
...  

2006 ◽  
Vol 46 (1) ◽  
pp. 93 ◽  
Author(s):  
G. K. McDonald

High spatial and temporal variability is an inherent feature of dryland cereal crops over much of the southern cereal zone. The potential limitations to crop growth and yield of the chemical properties of the subsoils in the region have been long recognised, but there is still an incomplete understanding of the relative importance of different traits and how they interact to affect grain yield. Measurements were taken in a paddock at the Minnipa Agriculture Centre, Upper Eyre Peninsula, South Australia, to describe the effects of properties in the topsoil and subsoil on plant dry matter production, grain yield and plant nutrient concentrations in two consecutive years. Wheat (Triticum aestivum L. cv. Worrakatta) was grown in the first year and barley (Hordeum vulgare L. cv. Barque) in the second. All soil properties except pH showed a high degree of spatial variability. Variability in plant nutrient concentration, plant growth and grain yield was also high, but less than that of most of the soil properties. Variation in grain yield was more closely related to variation in dry matter at maturity and in harvest index than to dry matter production at tillering and anthesis. Soil properties had a stronger relationship with dry matter production and grain yield in 1999, the drier of the two years. Colwell phosphorus concentration in the topsoil (0–0.15 m) was positively correlated with dry matter production at tillering but was not related to dry matter production at anthesis or with grain yield. Subsoil pH, extractable boron concentration and electrical conductivity (EC) were closely related. The importance of EC and soil extractable boron to grain yield variation increased with depth, but EC had a greater influence than the other soil properties. In a year with above-average rainfall, very little of the variation in yield could be described by any of the measured soil variables. The results suggest that variation in EC was more important to describing variation in yield than variation in pH, extractable boron or other chemical properties.


Sign in / Sign up

Export Citation Format

Share Document