scholarly journals Effect of Incorporation Levels of Green Manure Crops on Rice Yield and Soil Chemical Properties

2017 ◽  
Vol 50 (3) ◽  
pp. 187-194
Author(s):  
Se-Won Kang ◽  
Dong-Cheol Seo ◽  
Ju-Sik Cho
2011 ◽  
Vol 31 (4) ◽  
pp. 360-367
Author(s):  
Bong-Su Choi ◽  
Weon-Tai Jeon ◽  
Yong-Hwan Lee ◽  
Min-Tae Kim ◽  
Sun-Pyo Eum ◽  
...  

Author(s):  
Fahamida Akter ◽  
Md. Mizanur Rahman ◽  
Md. Ashraful Alam

Organic fertilizers are enriched in plant nutrients which may enhance the soil chemical properties. However, studies on the effect of long term fertilization on soil chemical attributes is yet lacking in Bangladesh. Therefore, an experiment was conducted to assess the changes of soil chemical properties as influenced by long term manuring and nitrogen fertilizer in silt clay loam soil under rice-wheat cropping system. The experimental plot received different organic materials for the last 26 years (1988-2014). Five types of organic materials treatments such as control (no manure), cowdung, compost, green manure and rice straw were applied at the rate of 0, 25, 25, 7.5 and 1.5 t ha-1, respectively in a yearly sequence. Three levels of nitrogen viz. 0, 75 and 100 kg ha-1 for rice and 0, 80 and 120 kg ha-1 for wheat were applied in this study. Long term application of different organic materials positively increased soil organic carbon and total N, P, S and decreased pH and K, Ca and Mg availability. Increase in soil organic carbon was found maximum under green manure and lowest in rice straw applied soil. The green manure contributed to the maximum accumulation of soil nitrogen. N dose of 80 kg ha-1 was found effective in increasing availability of soil nutrients.


2021 ◽  
Vol 9 (1) ◽  
pp. 10-19
Author(s):  
Tiara Kartika Sari ◽  
Muhammad Rif’an ◽  
Sakhidin Sakhidin

Rice is the primary food commodity in Indonesia. To increase the rice production, urea fertilizer has been excessively used, specifically on marginal land. However, it has no desired effect on the plant’s Nitrogen uptake due to volatilization. Previous studies suggest the use of zeolite to be mixed with urea to reduce the volatilization rate. This study aimed to determine the effect of six NP-SR (Nitrogen Phosphorus Slow Release) fertilizer compositions (without NP-SR; 20.69-0; 19.7-5; 17.27-10; 15.9-15; and 18.94-20) on soil chemical properties, nitrogen efficiency, and paddy rice yield on Ultisols at three waterlogging levels (0.5 cm, 3 cm, and 5 cm). The study was an experiment arranged in a Randomized Complete Block Design (RCBD) consisting of two factors, which were waterlogging levels and NP-SR fertilizer compositions. The results showed that waterlogging treatments significantly affected soil chemical properties in the initial vegetative and harvest phases. It can be concluded that the treatment of flooding (up to 3 cm) and fertilizer (NP-SR of 15.90-15) application could significantly reduce the volatilization rate, increase the efficiency of N fertilizer, and increase rice yield.


2015 ◽  
Vol 2 (3) ◽  
pp. 385-394
Author(s):  
Niloy Paul ◽  
Mohammad Kamrul Hasan ◽  
Md Nasir Uddin Khan

A field experiment was conducted to find out the effect of different doses of ipil-ipil (Leucaena leucocephala ) (Lam.) de Wit. tree green leaf biomass on rice yield and soil chemical properties. Four different treatments such as T0: Recommended fertilizer dose (Urea 195 kg/ha, TSP 50 kg/ha, MOP 142 kg/ha, Gypsum 75 kg/ha and Zinc Sulphate 4 kg/ha), T1: 5 t/ha, T2: 7.5 t/ha, and T3: 10 t/ha ipil-ipil tree green leaf was used in this study in a Randomized complete block design with three replications. The results showed that the treatment T3 was performed better than recommended fertilizer dose in case all yield contributing characters of rice except grain yield. The highest (5.29 t/ha) rice grain yield was obtained in recommended fertilizer dose followed by 10 t/ha, 7.5 t/ha and 5 t/ha ipil-ipil tree green leaf biomass amendment having 4.80, 3.16 and 2.36 t/ha respectively. The highest grain yield that was obtained from recommended fertilizer dose was 10.21% higher compared to the highest dose (10 t/ha) of ipil-ipil tree green leaf biomass. It was mentioned that among the different doses of ipil-ipil tree green leaf biomass 10 t/ha performed the best over others. The ipil-ipil tree green leaf biomass was also significantly influenced on some essential nutrient status which is very important for rice production. The highest amount of total N, available P, exchangeable K and available S were found in the treatment T3 and the lowest in the treatment T1. Therefore, it can be concluded that the ipil-ipil tree leaf has beneficial effects and could be combined with inorganic fertilizer for sustainable crop yield and maintaining soil fertility.Res. Agric., Livest. Fish.2(3): 385-394, December 2015


Sign in / Sign up

Export Citation Format

Share Document