scholarly journals Effect of wind on performance of double slope solar desalination still for fresh water production.

Author(s):  
Y. Robinson ◽  
C.K. Sivakumar

This study aimed at investigating the effect of wind for double slope solar desalination still. Two double slope solar stills were designed, constructed and experimentally tested their performance depending up on the wind. One experiment carried out with a wind speed of 4m/s and other 3m/s. The results show that the variation in wind affects the fresh water production. Double slope solar desalination still with wind speed 4m/s gives 17.8% higher productivity compare to 3m/s. Keywords: wind, freshwater production, desalination.

Author(s):  
C.K. Sivakumar ◽  
Y. Robinson ◽  
K. Saravanakumar

This paper deals with the effect of thickness of glass material which covered on double slope solar desalination still, performance of the solar still affected by thickness of the glass, which result in to major heat losses in the system. Two inward double slope desalination still with different glass thickness were designed, constructed and experimentally tested their performance. The glasses are inclined 200 from the center of the still. The solar energy collecting area of still is 1m2.The result shows that the variation in glass thickness will affect the efficiency of the still, desalination still with 4mm thickness gives 48% higher fresh water productivity compare to 6mm glass thickness.


2020 ◽  
Vol 171 ◽  
pp. 115054
Author(s):  
Muhsen Al-Hrari ◽  
İlhan Ceylan ◽  
Khaled Nakoa ◽  
Alper Ergün

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Adel M. Abdel Dayem

An innovative solar desalination system is successfully designed, manufactured, and experimentally tested at Makkah, 21.4 degN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 l vertical cylindrical insulated tank. It includes storage, evaporator, and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 l a day per quadratic meter of collector surface area. By that it can produce about 1.6 l/kWh of solar energy. Moreover, the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.


Author(s):  
Jameel R. Khan ◽  
James F. Klausner ◽  
Donald P. Ziegler ◽  
Srinivas S. Garimella

The diffusion driven desalination (DDD) process has been previously introduced as a process for distilling water using low-grade waste heat. Here, a configuration of the DDD process is introduced for simultaneously distilling water and scrubbing sulfur dioxide (SO2) out of heated air streams, which is also known as flue gas desulfurization (FGD). This novel DDD/FGD process utilizes the low-grade waste heat carried in industrial discharge air streams. There are many applications, where the industrial air discharge also contains SO2, and in order to utilize the waste heat for the DDD process, the SO2 must be scrubbed out of the air stream. The two major components of the DDD process are the diffusion tower and the direct contact condenser. In the present work, a thermal fluid transport model for the DDD/FGD process, that includes SO2 scrubbing, is developed. It is an extension of the heat and mass transport model previously reported for the DDD process. An existing laboratory scale DDD facility was modified and tested with SO2 in the air stream and with seawater as the feed water to the diffusion tower. The experimental investigation has been completed to evaluate the fresh water production and SO2 scrubbing potential for the DDD/FGD process. The experimental results compare favorably with the model predictions. Chemical analysis on the condenser water demonstrates the capability of the DDD/FGD process to produce high quality fresh water using seawater as the input feed water to the process.


2010 ◽  
Vol 14 (1) ◽  
pp. 512-517 ◽  
Author(s):  
Hacene Mahmoudi ◽  
Nawel Spahis ◽  
Mattheus F. Goosen ◽  
Noreddine Ghaffour ◽  
Nadjib Drouiche ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 101204 ◽  
Author(s):  
A.E. Kabeel ◽  
Ravishankar Sathyamurthy ◽  
A. Muthu Manokar ◽  
Swellam W. Sharshir ◽  
F.A. Essa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document