Efficient Solar Desalination System Using Humidification/Dehumidification Process

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Adel M. Abdel Dayem

An innovative solar desalination system is successfully designed, manufactured, and experimentally tested at Makkah, 21.4 degN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 l vertical cylindrical insulated tank. It includes storage, evaporator, and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 l a day per quadratic meter of collector surface area. By that it can produce about 1.6 l/kWh of solar energy. Moreover, the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.

2012 ◽  
Vol 512-515 ◽  
pp. 3-8
Author(s):  
Jing Chen ◽  
Shun Quan Chen ◽  
Yun Mo Zhao ◽  
Ru Xu Du

This paper presents the thermal performance of a multi-effect distillation (MED) solar desalination unit located in southern China. The system was designed and installed in April 2011, and has been in operation since that time till now. The seawater desalination system is driven by 60 m2 all-glass vacuum tubes solar collector with an additional rainwater utilization system to produce fresh water on both sunny and rainy days. The preliminary experimental results show that the water production of the system for per unit of solar collector area could reach up to more than 12.5kg/m2·day under the fine weather conditions. Water production of the system was stable in long period and the annual production could reach to 387.5 m3 in southern China. The economic performance of the system is also discussed. The cost of water production is estimated approximately 4.15 $/m3 for the 15-year service life.


Desalination ◽  
2021 ◽  
Vol 507 ◽  
pp. 115033
Author(s):  
Daiwang Song ◽  
Yin Zhang ◽  
Haitao Wang ◽  
Lidong Jiang ◽  
Chengpeng Wang ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


Author(s):  
D P Bistriceanu ◽  
S G Pal ◽  
F C Ciornei ◽  
C Bujoreanu

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zhou ◽  
ShuDao Zhang ◽  
Ying Zhang ◽  
JiaHao Tan

In order to achieve energy saving and reduce the total cost of ownership, green storage has become the first priority for data center. Detecting and deleting the redundant data are the key factors to the reduction of the energy consumption of CPU, while high performance stable chunking strategy provides the groundwork for detecting redundant data. The existing chunking algorithm greatly reduces the system performance when confronted with big data and it wastes a lot of energy. Factors affecting the chunking performance are analyzed and discussed in the paper and a new fingerprint signature calculation is implemented. Furthermore, a Bit String Content Aware Chunking Strategy (BCCS) is put forward. This strategy reduces the cost of signature computation in chunking process to improve the system performance and cuts down the energy consumption of the cloud storage data center. On the basis of relevant test scenarios and test data of this paper, the advantages of the chunking strategy are verified.


2015 ◽  
Vol 4 (2) ◽  
pp. 288 ◽  
Author(s):  
Nabil Al-Hazim ◽  
Zaydoun Abusalem

This study aims to identify the most important factors that cause delay in road construction projects in Jordan, which results in cost and time overrun allocated for this type of engineering projects and cause critical problems for both the developer and the contractor. The gap between the cost at completion and that originally estimated, known as cost overrun, can be regarded as one of the most important parameters reflecting the success of projects. In the public sector, money spent on project change orders results in increased construction time which in return reduces the number and size of the projects that can be completed during any given fiscal year. To achieve this goal, the documents and the final reports for several sample projects implemented over the years 2000 to 2008 were analyzed. All the projects were administered by the same organization taken from Jordan Ministry of Rural and Public Works. The results of this study can assist highway officials in their design, planning, scheduling and projects completions so that necessary actions can be taken to control these overruns in future projects. The study showed that 19 factors might cause delays of road construction projects as defined through a detailed literature review. The analysis of the study indicated that the top causes affecting time and cost overrun in road construction projects in Jordan are Terrain and Weather conditions.


Author(s):  
I Nengah Ardita ◽  
◽  
I Gusti Agung Bagus Wirajati ◽  
I Dewa Made Susila ◽  
Sudirman Sudirman ◽  
...  

Split air conditioning (AC) is the most widely used in the community for both commercial and domestic utilities. At the present refrigerant which used in Split AC is mostly common group of HFCs, such as R410a. R410a is a zeotropic refrigerant and if there is a leak in the system, it cannot be added this refrigerant. This will increase the cost of maintenance. The aims of this research is to investigate the retrofit of R410a with R32 on the Split AC system. The R32 is chosen because it has higher latent evaporation heat at the same temperature and has less effect on global warming. The refrigeration effect, the power consumption and the system performance are the main three quantities that want to be examined in this research which are observed before and after retrofit. Experimental investigation conducted during this research, including design and manufacture of experimental equipment, calibration and tools installment, collecting the experimental data and analysis by quantitative description method before and after retrofit. The results informed that cooling effect increased during the research, but the COP system has a slight decrease about 4%. R32 refrigerant is quite feasible as a retrofit refrigerant to R410a refrigerant.


2021 ◽  
Vol 3 (4) ◽  
pp. 1-1
Author(s):  
Tran X Phuoc ◽  
◽  
Mehrdad Massoudi ◽  

To store CO2 in geological reservoirs, expansion valves have been used to intentionally release supercritical CO2 from high-pressure containers at a source point to lower-pressure pipelines and transport to a selected injection site. Using expansion valves, however, has some shortcomings: (i) the fluid potential, in the form of kinetic energy and pressure which can produce mechanical work or electricity, is wasted, and (ii) due to the Joule-Thomson cooling effect, the reduction in the temperature of the released CO2 stream might be so dramatic that it can induce thermal contraction of the injection well causing fracture instability in the storage formation. To avoid these problems, it has been suggested that before injection, CO2, should be heated to a temperature slightly higher than that of the reservoir. However, heating could increase the cost of CO2 injection. This work explores the use of a Tesla Turbine, instead of an expansion valve, to harvest the potential of CO2, in the form of its pressure and kinetics, to generate mechanical work when it is released from a high-pressure container to a lower-pressure transport pipeline. The goal is to avoid throttling losses and to produce useful power because of the expansion process. In addition, due to the friction between the gas and the turbine disks, the expanded gas temperature reduction is not as dramatic as in the case when an expansion valve is used. Thus, as far as CO2 injection is concerned, the need for preheating can be minimized.


Author(s):  
Y. Robinson ◽  
C.K. Sivakumar

This study aimed at investigating the effect of wind for double slope solar desalination still. Two double slope solar stills were designed, constructed and experimentally tested their performance depending up on the wind. One experiment carried out with a wind speed of 4m/s and other 3m/s. The results show that the variation in wind affects the fresh water production. Double slope solar desalination still with wind speed 4m/s gives 17.8% higher productivity compare to 3m/s. Keywords: wind, freshwater production, desalination.


Sign in / Sign up

Export Citation Format

Share Document