scholarly journals Optimal Numbers of Base Station Antennas and Users in Multiuser Massive MIMO Systems with Pilot Overhead

Author(s):  
Minchae Jung ◽  
Sooyong Choi
Author(s):  
Xing Zhang ◽  
Ashutosh Sabharwal

AbstractUser subset selection requires full downlink channel state information to realize effective multi-user beamforming in frequency-division duplexing (FDD) massive multi-input multi-output (MIMO) systems. However, the channel estimation overhead scales with the number of users in FDD systems. In this paper, we propose a novel propagation domain-based user selection scheme, labeled as zero-measurement selection, for FDD massive MIMO systems with the aim of reducing the channel estimation overhead that scales with the number of users. The key idea is to infer downlink user channel norm and inter-user channel correlation from uplink channel in the propagation domain. In zero-measurement selection, the base-station performs downlink user selection before any downlink channel estimation. As a result, the downlink channel estimation overhead for both user selection and beamforming is independent of the total number of users. Then, we evaluate zero-measurement selection with both measured and simulated channels. The results show that zero-measurement selection achieves up to 92.5% weighted sum rate of genie-aided user selection on the average and scales well with both the number of base-station antennas and the number of users. We also employ simulated channels for further performance validation, and the numerical results yield similar observations as the experimental findings.


2021 ◽  
Author(s):  
Seyedeh Samira Moosavi ◽  
Paul Fortier

Abstract Currently, localization in distributed massive MIMO (DM-MIMO) systems based on the fingerprinting (FP) approach has attracted great interest. However, this method suffers from severe multipath and signal degradation such that its accuracy is deteriorated in complex propagation environments, which results in variable received signal strength (RSS). Therefore, providing robust and accurate localization is the goal of this work. In this paper, we propose an FP-based approach to improve the accuracy of localization by reducing the noise and the dimensions of the RSS data. In the proposed approach, the fingerprints rely solely on the RSS from the single-antenna MT collected at each of the receive antenna elements of the massive MIMO base station. After creating a radio map, principal component analysis (PCA) is performed to reduce the noise and redundancy. PCA reduces the data dimension which leads to the selection of the appropriate antennas and reduces complexity. A clustering algorithm based on K-means and affinity propagation clustering (APC) is employed to divide the whole area into several regions which improves positioning precision and reduces complexity and latency. Finally, in order to have high precise localization estimation, all similar data in each cluster are modeled using a well-designed deep neural network (DNN) regression. Simulation results show that the proposed scheme improves positioning accuracy significantly. This approach has high coverage and improves average root-mean-squared error (RMSE) performance to a few meters, which is expected in 5G and beyond networks. Consequently, it also proves the superiority of the proposed method over the previous location estimation schemes.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1061 ◽  
Author(s):  
Hedi Khammari ◽  
Irfan Ahmed ◽  
Ghulam Bhatti ◽  
Masoud Alajmi

In this paper, a joint spatio–radio frequency resource allocation and hybrid beamforming scheme for the massive multiple-input multiple-output (MIMO) systems is proposed. We consider limited feedback two-stage hybrid beamformimg for decomposing the precoding matrix at the base-station. To reduce the channel state information (CSI) feedback of massive MIMO, we utilize the channel covariance-based RF precoding and beam selection. This beam selection process minimizes the inter-group interference. The regularized block diagonalization can mitigate the inter-group interference, but requires substantial overhead feedback. We use channel covariance-based eigenmodes and discrete Fourier transforms (DFT) to reduce the feedback overhead and design a simplified analog precoder. The columns of the analog beamforming matrix are selected based on the users’ grouping performed by the K-mean unsupervised machine learning algorithm. The digital precoder is designed with joint optimization of intra-group user utility function. It has been shown that more than 50 % feedback overhead is reduced by the eigenmodes-based analog precoder design. The joint beams, users scheduling and limited feedbacK-based hybrid precoding increases the sum-rate by 27 . 6 % compared to the sum-rate of one-group case, and reduce the feedback overhead by 62 . 5 % compared to the full CSI feedback.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 164 ◽  
Author(s):  
Zahra Mokhtari ◽  
Maryam Sabbaghian ◽  
Rui Dinis

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Byung-Jin Lee ◽  
Sang-Lim Ju ◽  
Nam-il Kim ◽  
Kyung-Seok Kim

Massive multiple-input multiple-output (MIMO) systems are a core technology designed to achieve the performance objectives defined for 5G wireless communications. They achieve high spectral efficiency, reliability, and diversity gain. However, the many radio frequency chains required in base stations equipped with a high number of transmit antennas imply high hardware costs and computational complexity. Therefore, in this paper, we investigate the use of a transmit-antenna selection scheme, with which the number of required radio frequency chains in the base station can be reduced. This paper proposes two efficient transmit-antenna selection (TAS) schemes designed to consider a trade-off between performance and computational complexity in massive MIMO systems. The spectral efficiency and computational complexity of the proposed schemes are analyzed and compared with existing TAS schemes, showing that the proposed algorithms increase the TAS performance and can be used in practical systems. Additionally, the obtained results enable a better understanding of how TAS affects massive MIMO systems.


Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Claudio Ferreira Dias ◽  
Fabbryccio A. C. M. Cardoso ◽  
Gustavo Fraidenraich

Accurate channel estimation is of utmost importance for massive MIMO systems to provide significant improvements in spectral and energy efficiency. In this work, we present a study on the distribution of a simple but yet effective and practical channel estimator for multi-cell massive MIMO systems suffering from pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without previous knowledge of the inter-cell large-scale channel coefficients and noise power, asymptotically approximating the performance of the linear MMSE estimator as the number of antennas increases. We prove that the distribution of the proposed channel estimator can be accurately approximated by the circularly-symmetric complex normal distribution, when the number of antennas, M, deployed at the base station is greater than 10.


Sign in / Sign up

Export Citation Format

Share Document