A Study on the Reduction Effect of Nitrogen Oxide in Photocatalyst using Highway Facilities

2021 ◽  
Vol 23 (3) ◽  
pp. 9-18
Author(s):  
Sang Hyuk Lee ◽  
Jong Won Lee ◽  
Moon Kyung Kim ◽  
Hee Mun Park
2001 ◽  
Vol 60 (4) ◽  
pp. 215-230 ◽  
Author(s):  
Jean-Léon Beauvois

After having been told they were free to accept or refuse, pupils aged 6–7 and 10–11 (tested individually) were led to agree to taste a soup that looked disgusting (phase 1: initial counter-motivational obligation). Before tasting the soup, they had to state what they thought about it. A week later, they were asked whether they wanted to try out some new needles that had supposedly been invented to make vaccinations less painful. Agreement or refusal to try was noted, along with the size of the needle chosen in case of agreement (phase 2: act generalization). The main findings included (1) a strong dissonance reduction effect in phase 1, especially for the younger children (rationalization), (2) a generalization effect in phase 2 (foot-in-the-door effect), and (3) a facilitatory effect on generalization of internal causal explanations about the initial agreement. The results are discussed in relation to the distinction between rationalization and internalization.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


Sign in / Sign up

Export Citation Format

Share Document