scholarly journals Hardware/software approach for code synchronization in low-power multi-core sensor nodes

Author(s):  
Rubean Braojos ◽  
Ahmed Dogan ◽  
Ivan Beretta ◽  
Giovanni Ansaloni ◽  
David Atienza
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1823
Author(s):  
Mohammad Haidar ◽  
Hussein Chible ◽  
Corrado Boragno ◽  
Daniele D. Caviglia

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.


2014 ◽  
Vol 49 (8) ◽  
pp. 1682-1693 ◽  
Author(s):  
Seokhyeon Jeong ◽  
Zhiyoong Foo ◽  
Yoonmyung Lee ◽  
Jae-Yoon Sim ◽  
David Blaauw ◽  
...  

Author(s):  
Sibel Akkaya Oy ◽  
Ali Ekber Özdemir

This manuscript presents a new experimental wind generator based on piezoelectric energy conversion for low power applications. The aim is to demonstrate an alternative renewable energy generation method for low power applications. The generator has four blades of a propeller equipped with a total of twenty-four (24) thin film piezoelectric transducers (TFPTs). The output voltage is generated using a newly developed circuit topology. The generator was tested at three wind speeds 10 m/s, 14 m/s and 18 m/s, with a maximum output voltage of 10.2 V being produced at a wind speed of 18 m/s. Results show that this generator has promise to be suitable for low power batteryless applications, for example wireless sensor nodes (WSN).


Author(s):  
Marius Rosu ◽  
Sever Pasca

Healthcare solutions using anytime, and anywhere remote healthcare surveillance devices, have become a major challenge. The patients with chronic diseases who need only therapeutic supervision are not advised to occupy a hospital bed. Using Wearable Wireless Body/Personal Area Network (WWBAN), intelligent monitoring of heart can supply information about medical conditions. Electrocardiogram (ECG) is the core reference in the diagnosis and medication process. An approach on healthcare solution WBAN based, for real-time ECG signal monitoring and long-term recording will be presented. Low-power wireless sensor nodes with local processing and encoding capabilities in order to achieve maximum mobility and flexibility are our main goal. ZigBee wireless technology will be used for transmission. Sensor device will be programmed to process locally the ECG signal and to raise an alert. Low-power and miniaturization are essential physical requirements.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1009
Author(s):  
Mingxue Li ◽  
Huichao Deng ◽  
Yufeng Zhang ◽  
Kexin Li ◽  
Shijie Huang ◽  
...  

With the development of low-power technology in electronic devices, the wireless sensor network shows great potential in applications in health tracing and ocean monitoring. These scenarios usually contain abundant low-frequency vibration energy, which can be collected through appropriate energy conversion architecture; thus, the common issue of limited battery life in wireless sensor devices could be solved. Traditional energy-converting structures such as the cantilever-beam type or spring-mass type have the problem of high working frequency. In this work, an eccentric pendulum-based electromagnetic vibration energy harvester is designed, analyzed, and verified with the finite element analysis method. The pendulum that contains alternative distributed magnets in the outer side works as a rotor and has the advantages of a simple structure and low center frequency. The structure size is well scalable, and the optimal output performance can be obtained by optimizing the coil thickness and width for a given diameter of the energy harvester. The simulation results show that the energy harvester could work in ultra-low frequencies of 0.2–3.0 Hz. A full-scale prototype of the energy harvester is manufactured and tested. The center working frequency is 2.0 Hz with an average output power of 8.37 mW, which has potential for application in driving low-power wireless sensor nodes.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3884 ◽  
Author(s):  
Hongxian Tian ◽  
Mary Weitnauer ◽  
Gedeon Nyengele

We study the placement of gateways in a low-power wide-area sensor network, when the gateways perform interference cancellation and when the model of the residual error of interference cancellation is proportional to the power of the packet being canceled. For the case of two sensor nodes sending packets that collide, by which we mean overlap in time, we deduce a symmetric two-crescent region wherein a gateway can decode both collided packets. For a large network of many sensors and multiple gateways, we propose two greedy algorithms to optimize the locations of the gateways. Simulation results show that the gateway placements by our algorithms achieve lower average contention, which means higher packet delivery ratio in the same conditions, than when gateways are naively placed, for several area distributions of sensors.


Sign in / Sign up

Export Citation Format

Share Document