scholarly journals Optimized Gateway Placement for Interference Cancellation in Transmit-Only LPWA Networks

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3884 ◽  
Author(s):  
Hongxian Tian ◽  
Mary Weitnauer ◽  
Gedeon Nyengele

We study the placement of gateways in a low-power wide-area sensor network, when the gateways perform interference cancellation and when the model of the residual error of interference cancellation is proportional to the power of the packet being canceled. For the case of two sensor nodes sending packets that collide, by which we mean overlap in time, we deduce a symmetric two-crescent region wherein a gateway can decode both collided packets. For a large network of many sensors and multiple gateways, we propose two greedy algorithms to optimize the locations of the gateways. Simulation results show that the gateway placements by our algorithms achieve lower average contention, which means higher packet delivery ratio in the same conditions, than when gateways are naively placed, for several area distributions of sensors.

Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4591
Author(s):  
Srividhya Swaminathan ◽  
Suresh Sankaranarayanan ◽  
Sergei Kozlov ◽  
Joel J. P. C. Rodrigues

Forest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works did not focus on forest fire management. The IoT-enabled environment is made up of low power lossy networks (LLNs). For improving the performance of routing protocol in forest fire management, energy-efficient routing protocol for low power lossy networks (E-RPL) was developed where residual power was used as an objective function towards calculating the rank of the parent node to form the destination-oriented directed acyclic graph (DODAG). The challenge in E-RPL is the scalability of the network resulting in a long end-to-end delay and less packet delivery. Additionally, the energy of sensor nodes increased with different transmission range. So, for obviating the above-mentioned drawbacks in E-RPL, compressed data aggregation and energy-based RPL routing (CAA-ERPL) is proposed. The CAA-ERPL is compared with E-RPL, and the performance is analyzed resulting in reduced packet transfer delay, less energy consumption, and increased packet delivery ratio for 10, 20, 30, 40, and 50 nodes. This has been evaluated using a Contiki Cooja simulator.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 82
Author(s):  
Santosh Anand ◽  
Pillai Atulya Radhakrishna

In current technology Adhoc network is most commonly used in communication network. Major parts of the Adhoc network devices are based on the sensor nodes. Sensor devices operated on the battery so energy is vital constraint. Effective Utilization of the energy of the sensor nodes and sensor networks to the full extent is highly impracticable. Optimization of the network root and the load balancing in coverage helps to maximize the lifetime of the sensor network considerably. The research carry out on sensor network, deployment model is proposed which essentially finds the optimized roots with the help of  neighbour discovery algorithm which find the neighbour and non neighbour nodes and analysis the load of the network based on Packet Retrieval in RREQ, throughput, average energy consumption, packet delivery ratio and packet drop. 


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


2018 ◽  
Vol 19 (2) ◽  
pp. 80-89
Author(s):  
Rosminazuin Ab. Rahim ◽  
Abdallah Awad ◽  
Aisha Hassan Abdalla Hashim ◽  
ALIZA AINI MD RALIB

ABSTRACT: The current de-facto routing protocol over Low Power and Lossy Networks (LLN) developed by the IETF Working Group (6LOWPAN), is named as Routing Protocol for Low Power and Lossy networks (RPL). RPL in the network layer faces throughput  challenges due to the potential  large networks, number of nodes, and that  multiple  coexisting applications  will  be  running  in  the  same physical layer.  In this study, a node metric for RPL protocol based on the node’s Queue Backlogs is introduced, which leads to a better throughput performance while maintaining the delay and the ability to use with different network applications. This metric depends on the length of Packet Queue of the nodes with the consideration of other link and node metrics, like ETX or energy usage, leading to better load balancing in the network. To implement and evaluate the proposed metric compared to other RPL metrics, ContikiOS and COOJA simulator are used. Extensive simulations have been carried out in a systematic way resulting in a detailed analysis of the introduced metric namely W-metric, expected transmission count (ETX) and objective function zero (OF0) that uses hop-count as a routing metric. The analysis and comparison are based on five performance parameters, which are throughput, packet delivery ratio (PDR), latency, average queue length, and power consumption. Simulation results show that the introduced W-metric has a good performance compared to other RPL metrics with regards to performance parameters mentioned above. At the same time, the results show that its latency performance is comparable with other RPL routing metrics. In a sample simulation of 500 seconds with 25 nodes and with nodes sending packets periodically to the network root at a rate of 1 packet per 4 seconds, W-metric showed a very efficient throughput of 5.16 kbps, an increase of 8.2% compared to ETX. Results showed that it has a packet delivery ratio of 93.3%, which is higher compared to 83.3% for ETX and 74.2% for OF0. Average queue length of 0.48 packet shows improvement of 15.8% better than ETX. In addition, it exhibits an energy consumption of 5.16 mW which is 2.1% less than ETX. Overall, W-metric appears to be a promising alternative to ETX and OF0 as it selects routes that are more efficient by working on load balancing of the network and by considering the link characteristics. ABSTRAK: Protokol penghalaan de-facto semasa ke atas Rangkaian Kekuatan Rendah dan Lossy yang dibangunkan oleh Kumpulan Kerja IETF (6LOWPAN), dinamakan Protokol Penghalaan untuk Kekuatan Rendah dan Rugi (RPL). RPL dalam lapisan rangkaian menghadapi cabaran throughput berikutan jangkaan rangkaian besar, bilangan nod dan aplikasi berganda bersama akan diproses dalam lapisan fizikal yang sama. Dalam kajian ini, satu metrik nod untuk protokol RPL berdasarkan pada Backend Queue node diperkenalkan, yang membawa kepada prestasi yang lebih baik sambil mengekalkan kelewatan dan keupayaan untuk digunakan dengan aplikasi rangkaian yang berbeza. Metrik ini bergantung pada panjang Packet Queue dari node dengan pertimbangan metrik lain dan nodus lain, seperti ETX atau penggunaan tenaga, yang mengarah kepada keseimbangan beban yang lebih baik dalam rangkaian. Untuk melaksanakan dan menilai metrik yang dicadangkan berbanding metrik RPL lain, ContikiOS dan COOJA simulator telah digunakan. Simulasi meluas telah dijalankan dengan cara yang sistematik yang menghasilkan analisis terperinci mengenai metrik yang diperkenalkan iaitu W-metrik, kiraan penghantaran dijangkakan (ETX) dan fungsi objektif sifar (OF0) yang menggunakan kiraan hop sebagai metrik penghalaan. Analisis dan perbandingan adalah  berdasarkan lima parameter prestasi, iaitu throughput, nisbah penghantaran paket (PDR), latency, panjang panjang antrian, dan penggunaan kuasa. Hasil simulasi menunjukkan bahawa W-metrik yang diperkenalkan mempunyai prestasi yang lebih baik berbanding dengan metrik RPL lain berkaitan dengan parameter prestasi yang dinyatakan di atas. Pada masa yang sama, hasil menunjukkan bahawa prestasi latency W-metrik adalah setanding dengan metrik penghalaan RPL yang lain. Dalam simulasi sampel 500 saat dengan 25 nod dan dengan nod yang menghantar paket secara berkala ke akar rangkaian pada kadar 1 paket setiap 4 saat, W-metrik menunjukkan keluaran yang sangat efisien iaitu 5.16 kbps, peningkatan sebanyak 8.2% berbanding ETX. Keputusan menunjukkan bahawa ia mempunyai nisbah penghantaran paket 93.3%, yang lebih tinggi berbanding 83.3% untuk ETX dan 74.2% untuk OF0. Purata panjang giliran 0.48 packet menunjukkan peningkatan 15.8% lebih baik daripada ETX. Di samping itu, ia mempamerkan penggunaan tenaga sebanyak 5.16 mW iaitu 2.1% kurang daripada ETX. Secara keseluruhan, W-metrik nampaknya menjadi alternatif yang berpotensi menggantikan ETX dan OF0 kerana ia memilih laluan yang lebih cekap dengan bekerja pada keseimbangan beban rangkaian dan dengan mempertimbangkan ciri-ciri pautan.


This paper develops a method to detect the failures of wireless links between one sensor nodes to another sensor node in WSN environment. Every node in WSN has certain properties which may vary time to time based on its ability to transfer or receive the packets on it. This property or features are obtained from every node and they are classified using Neural Networks (NN) classifier with predetermined feature set which are belonging to both weak link and good link between nodes in wireless networks. The proposed system performance is analyzed by computing Packet Delivery Ratio (PDR), Link Failure Detection Rate (LFDR) and latency report.


2012 ◽  
Vol 157-158 ◽  
pp. 503-506 ◽  
Author(s):  
Tao Yang ◽  
Pan Guo Fan ◽  
De Jun Mu

Wireless sensor network is always deployed in specific area for intrusion detection and environmental monitoring. The sensor nodes suffer mostly from their limited battery capacity.Maximizing the lifetime of the entire networks is mainly necessary considered in the design. Sliding the sensors in different barriers under the optimal barrier construction is a good solution for both maximizing network lifetime and providing predetermined coverage ratio. The simulation results demonstrate that the scheme can effectively reduce the energy consumption of the wireless sensor network and increase the network lifetime.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


Wireless Sensor Network (WSN) is developed extremely because of their low installation cost and various applications. WSN has compact and inexpensive sensor nodes for monitoring the physical environment. WSNs are susceptible to many attacks (e.g. malicious nodes) because of its distinct characteristics. The performance of node and network is affected by the malicious nodes. Moreover, the communication among the sensor nodes also required to be secured for preventing the data from the hackers. In this paper, the architecture of the WSN is generated by using the Fuzzy-C-Means clustering (FCM). Then the detection of the malicious nodes is performed by using the Acknowledgement Scheme (AS). This AS is integrated in the Ant Colony Optimization (ACO) based routing for avoiding the malicious nodes while generating the route from the source to the Base Station (BS). Then the Hybrid Encryption Algorithm (HEA) is used for performing the secure data transmission through the network and this proposed method is named as HEA-AS. The performance of the HEA-AS method is evaluated in terms of End to End Delay (EED), network lifetime, throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The proposed HEA-AS method is compared with the existing method called as CTCM to evaluate the effectiveness of the HEA-AS method.


2020 ◽  
Vol 3 (4) ◽  
pp. 259-270
Author(s):  
Nhan Chi Nguyen ◽  
Hoang Huy Nguyen ◽  
Tuan Ngoc Pham

This paper presents the design of wireless sensor network (WSN) based on low-power wide area network technology for high-tech agriculture. This WSN allows the farmer to collect data such as air temperature, air humidity, soil moisture. The WSN system consists of components: 02 wireless sensor nodes, 01 gateway, 01 cloud server and smartphone app. This WSN tested for data transmission in two zones: zone 1 (dense urban environments) at a distance of 500m and zone 2 (urban environments - less obstacles) at a distance of 1,500m and 1,700m. The data collected at different times of the day and updated every 15 minutes. The results show that the wireless sensor network system operates stably, data constantly updated to LoRa Server and there was not data packet loss. The power consumption of sensor node and gateway determined in three operating modes: transmitting, receiving, turn-off. This shows the advantages of LoRa technology in the development of wireless sensor network which is the distance of data transmission distance and low power consumption. Besides this WSN also tested in the net house of aquaponics of the Research Center for High-tech Application in Agriculture (RCHAA), University of Science, Vietnam National University-HCM. The results show that the WSN system is working reliably and promising which brings significantly benefits to smart agriculture as aquaponics, clean vegetable farms, aquaculture farms…


Sign in / Sign up

Export Citation Format

Share Document