The Statistical Analysis of Manual Removal of Stranded Oil Spills: Lessons Learned from Oil Spills Caused by the Russian Tanker Nakhodka

1999 ◽  
Vol 1999 (1) ◽  
pp. 1119-1121 ◽  
Author(s):  
Asami Shikida

ABSTRACT In 1997, the Russian tanker Nakhodka, weighing 13,157 tons, sank off in the Japan Sea reportedly causing an oil spill. The oil spill had a serious impact on the shoreline environment. The purpose of this poster is to present a method to estimate the number of workers needed to clean the shoreline with maximum efficiency and minimum redundancy. In this study the parameters of manual oil removal are estimated and the framework in which those parameters work is explained. The results show that the amount of oil removed in a day correlates with the cumulative amount of oil removed up to that day and the number of people engaged in cleaning up on that day. The equation predicting the amount of oil is: S = 13.4827 E − 0.03874 C + 38458.1525 R2 = 0.918, F (2,34) = 192.28,p<0.01where S = the amount of oil removed in a day (liter), E = the number of people engaged in cleaning up on that day, C = the cumulative amount of oil removed up to that day (liter), R = correlation coefficient, F = degree of freedom. With this equation, the total amount of stranded oil that can be collected on a certain day and the number of people necessary to remove the spilled oil at the most efficient rate can be estimated. One can also calculate the optimal number of workers for the task.

2005 ◽  
Vol 2005 (1) ◽  
pp. 439-442 ◽  
Author(s):  
Charlie Henry

ABSTRACT Since the Oil Pollution Act of 1990 (OPA 90), dispersants have been used as part of a combined response to mitigate seven oil spills in United States Gulf of Mexico (GOM) waters. Of the dispersant operations reported, four utilized the Regional Response Team VI pre-approval authority to the Federal On-Scene Coordinator (FOSC) that requires a monitoring plan. The successful integration of dispersant pre-authorization along with a fully funded ready response delivery system maintained by industry contributed to the successful use of dispersants to aid in mitigating spilled oil. A key element to gaining the original pre-approval authority was a functional operational monitoring plan. While each response was considered a successful dispersant operation, each incident provided valuable lessons learned that have been integrated into subsequent contingency planning and modifications to existing pre-authorization requirements in the GOM. This paper provides a chronological review of oil spill responses where dispersants were applied in the GOM since OPA 90.


2005 ◽  
Vol 2005 (1) ◽  
pp. 427-431 ◽  
Author(s):  
Barry A. Romberg ◽  
Dennis M. Maguire ◽  
Richard L. Ranger ◽  
Rod Hoffman

ABSTRACT This paper examines explosion hazards while recovering spilled oil utilizing oil spill recovery barges. The risk of static accumulation and discharge is well understood after thorough investigations of several incidents in the 1970s and 1980s involving explosions on tank barges and vessels during petroleum cargo loading and unloading operations. However, those lessons learned only partially apply to oil spill recovery operations due to the differences in liquid properties, crew training, and additional tasks required during an oil spill response. While regulatory standards have been enacted for petroleum tankers and barges involved in commercial transportation of oil and other hazardous materials, the utility of these standards for oil spill response vessels has not been fully considered. Inverviews were conducted with marine transporters and response organizations to understand the wide range of operational risks and mitigation proceedures currently in use. This paper outlines the four basic conditions that must be present to create a static discharge-induced explosion during liquid cargo operations. A review of explosion casualty history was completed for cargo operations and compared to operations that create similar hazards during oil spill recovery operations. Specific processes that create additional risk of static-induced explosions during response operations were studied to review mitigation actions. Finally, recommendations for continued training are provided to help guide the spill response community when preparing for and responding to oil spills.


2003 ◽  
Vol 2003 (1) ◽  
pp. 625-629
Author(s):  
Charlie Henry ◽  
Charles E. Sasser ◽  
Guerry O. Holm ◽  
Kevin Lynn ◽  
John Brolin ◽  
...  

ABSTRACT Freshwater marshes cover 4000 square kilometers of the Louisiana coastal zone and are the most abundant marsh habitat type. Many of these marshes actually float as organic mats on underlying water. Some estimates suggest as much as 70% of Louisiana's coastal freshwater marsh are of the floating variety. The slow flow of water characteristic of these environments generally transports very little sediment. As a result, the marsh substrate is composed of primarily live and dead organic matter (peat formation) rather than mineral sediments. Since floating marshes are structurally different than intertidal marsh habitats, many traditional oil spill response options are ineffective or inappropriate. Access to the marsh is often limited since there is no open water ingress and the marsh structure cannot support the weight of equipment. Oil spill response options are further complicated when the source of the oil is a pipeline leak located below the floating marsh mat; spilled oil is free to travel at the interface of the underlying water and mat. Protection booming is impossible. Oil impacts often result in the death of all the living plants that are integral to the formation and sustainability of the habitat. This paper reports on two oil spills in a floating marsh near Paradis, Louisiana that occurred eight years apart. Both spills were spatially close to each other, which provided an excellent comparison for assessing potential long-term impact from oil spills in floating marshes. During both oil spill responses, unique response techniques were developed to recover spilled oil and enhance marsh recovery. An effective technique was to rake away and remove the dead oil-contaminated surface plant debris from the site and employ sorbent recovery. Lessons learned from these responses were used to develop mitigation guidance for future responses.


1997 ◽  
Vol 7 (3) ◽  
pp. 533-543 ◽  
Author(s):  
Kuniaki KAWATA ◽  
Akiko TANABE ◽  
Hideko MITOBE ◽  
Masaaki SAKAI ◽  
Ikuei KIFUNE

2012 ◽  
Vol 11 (1-2) ◽  
pp. 100
Author(s):  
C. E. Stringari ◽  
W. C. Marques ◽  
L. F. Mello ◽  
R. T. Edit

Oil spills can generate different effects in different time scales on the marine ecosystem. The numerical modeling of this process is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is evaluate the local wind influence in a hypothetical oil spill along the Southern Brazilian shelf. The numerical simulation was carried using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande – FURG, coupled with the tridimensional hydrodynamical model TELEMAC3D (EDF, France). The hydrodynamic model provides the velocities, salinity and temperature fields used by the oil spill model to evaluate the behavior and fate of the oil. The results suggest that the local wind influence are the main forcing driven the fate of the spilled oil. The direction and intensity of the currents are important controlling the behavior and the tridimensional transportation of the oil, on the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around 53.4 kg/m³ after 5 days of simulation.


2020 ◽  
Vol 32 (4) ◽  
pp. 412-438
Author(s):  
TERESA SABOL SPEZIO

AbstractIn the face of technology failures in preventing oil from reaching beaches and coasts after catastrophic oil spills in the 1960s and early 1970s, the oil industry and governmental officials needed to quickly reconsider their idea of prevention. Initially, prevention meant stopping spilled oil from coating beaches and coasts. Exploring the presentations at three oil-spill conferences in 1969, 1971 and 1973, this idea of prevention changed as the technological optimism of finding effective methods met the realities of oil-spill cleanup. By 1973, prevention meant stopping oil spills before they happened. This rapid policy transformation came about because the oil industry could not hide the visual evidence of the source of their technology failures. In this century, as policymakers confront invisible pollutants such as pesticides and greenhouse gases, considering ways to visually show the source of the pollution along with the effects could quicken policy decisions.


1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


2001 ◽  
Vol 2001 (2) ◽  
pp. 975-981 ◽  
Author(s):  
Paula Jokuty

ABSTRACT When an oil spill occurs, there is an immediate need on the part of spill responders to know the properties of the spilled oil, as these will affect the behavior, fate, and effects of the oil, which will in turn affect the choice of countermeasures. However, it is often difficult or impossible to obtain a sample of the spilled oil, let alone the specialized analysis required to determine its properties, in a manner timely enough to suit the circumstances of an oil spill. Under the scrutiny of the media and the public, answers regarding the identity and predicted behavior of the spilled oil will be expected immediately, if not sooner. In preparation for such emergencies, the Emergencies Science Division (ESD) of Environment Canada has been collecting properties data for crude oils and oil products since 1984. Basic physical properties—density, viscosity, pour point, etc.—and environmentally relevant characteristics—evaporation rates, emulsion formation, chemical dispersibility—are measured. Properties related to health and safety—flash point, volatile organic compounds, sulfur—also are determined. In fact, nearly 20 different types of measurements are made for both fresh and weathered crude oils and oil products. To date data has been collected for more than 400 oils. For ease of access, this information is stored in an electronic database. The database in turn is accessible via the World Wide Web, and is also periodically printed in an easy-to-read catalogue format. The wide variety of data collected in the database also makes it possible to examine both simple and complex relationships that may exist between oil properties and spill behavior. This presentation will review the full scope of information determined and collected by ESD. Using tables and graphs, examples will be presented of the many ways in which this information can be viewed and used by both laymen and experts in the field of oil spills.


2017 ◽  
Vol 2017 (1) ◽  
pp. 104-123
Author(s):  
Yvonne Najah Addassi ◽  
Julie Yamamoto ◽  
Thomas M. Cullen

ABSTRACT The Refugio Oil Spill occurred on May 19, 2015, due to the failure of an underground pipeline, owned and operated by a subsidiary of Plains All-American Pipeline near Highway 101 in Santa Barbara County. The Responsible Party initially estimated the amount of crude oil released at about 104,000 gallons, with 21,000 gallons reaching the ocean. A Unified Command (UC) was established consisting of Incident Commanders from the U.S. Coast Guard (USCG), California Department of Fish and Wildlife (CDFW) Office of Spill Prevention and Response (OSPR), Santa Barbara County, and Plains Pipeline with additional participation by the U.S. Environmental Protection Agency and California State Parks. Within hours, the CDFW closed fisheries and the following day Governor Brown declared a state of emergency for Santa Barbara County. The released oil caused heavy oiling of both on and offshore areas at Refugio State Beach and impacted other areas of Santa Barbara and Ventura. A number of factors created unique challenges for the management of this response. In addition to direct natural resource impacts, the closure of beaches and fisheries occurred days before the Memorial Day weekend resulting in losses for local businesses and lost opportunities for the public. The Santa Barbara community, with its history with oil spills and environmental activism, was extremely concerned and interested in involvement, including the use of volunteers on beaches. Also this area of the coast has significant tribal and archeologic resources that required sensitive handling and coordination. Finally, this area of California’s coast is a known natural seep area which created the need to distinguish spilled from ‘naturally occurring’ oil. Most emergency responses, including oil spills, follow a similar pattern of command establishment, response and cleanup phases, followed by non-response phase monitoring, cleanup and restoration. This paper will analyze the Refugio oil spill response in three primary focus areas: 1) identify the ways in which this spill response was unique and required innovative and novel solutions; 2) identify the ways in which this response benefited from the ‘lessons’ learned from both the Deepwater Horizon and Cosco Busan oil spills; and 3) provide a summary of OSPR’s response evaluation report for Refugio, with specific focus on how the lessons learned and best practices will inform future planning efforts within California.


Sign in / Sign up

Export Citation Format

Share Document