scholarly journals Monitoring Oil Concentration In The Field

1999 ◽  
Vol 1999 (1) ◽  
pp. 1171-1173
Author(s):  
Patrick Lambert ◽  
B. Fieldhouse ◽  
Mervin F. Fingas ◽  
Mike Goldthorp

ABSTRACT The performance of three field kits was compared using prepared diesel fuel-in-sand samples and environmental field samples. The field kits were the EnviroGard Petroleum Fuels in Soil Test kit (EnviroGard, Millipore Canada, Mississauga, Ontario), PetroFlag Hydrocarbon Test Kit for Soil (Dexsil, Hamden, Connecticut), and a modified version of the method for oil and grease and petroleum hydrocarbons solvent extraction with infrared (IR) analysis (Buck Scientific, East Norwalk, Connecticut). The EnviroGard kit was affected by the sample matrix and was not capable of detecting the petroleum concentration. The Petroflag kit tended to generate results higher than the accepted concentration. The IR method was the most sensitive and produced values similar to the accepted concentration data.

2021 ◽  
Vol 13 (8) ◽  
pp. 4401
Author(s):  
Jeffrey M. Novak ◽  
James R. Frederick ◽  
Don W. Watts ◽  
Thomas F. Ducey ◽  
Douglas L. Karlen

Corn (Zea mays L.) stover is used as a biofuel feedstock in the U.S. Selection of stover harvest rates for soils is problematic, however, because excessive stover removal may have consequences on plant available P and K concentrations. Our objective was to quantify stover harvest impacts on topsoil P and K contents in the southeastern U.S. Coastal Plain Ultisols. Five stover harvest rates (0, 25, 50, 75 and 100% by wt) were removed for five years from replicated plots. Grain and stover mass with P and K concentration data were used to calculate nutrient removal. Mehlich 1 (M1)-extractable P and K concentrations were used to monitor changes within the soils. Grain alone removed 13–15 kg ha−1 P and 15–18 kg ha−1 K each year, resulting in a cumulative removal of 70 and 85 kg ha−1 or 77 and 37% of the P and K fertilizer application, respectively. Harvesting stover increased nutrient removal such that when combined with grain removed, a cumulative total of 95% of the applied P and 126% of fertilizer K were taken away. This caused M1 P and K levels to decline significantly in the first year and even with annual fertilization to remain relatively static thereafter. For these Ultisols, we conclude that P and K fertilizer recommendations should be fine-tuned for P and K removed with grain and stover harvesting and that stover harvest of >50% by weight will significantly decrease soil test M1 P and K contents.


2005 ◽  
Vol 48 (spe) ◽  
pp. 249-255 ◽  
Author(s):  
Sandro José Baptista ◽  
Magali Christe Cammarota ◽  
Denize Dias de Carvalho Freire

The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w) (NH4)2SO4 and 0.035% (w/w) KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM), oil and grease (OandG), and total petroleum hydrocarbons (TPH), measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%), OandG (37%) and TPH (45%) were obtained in the bioreactors in which the highest CO2 production was achieved.


2012 ◽  
Vol 66 (8) ◽  
Author(s):  
Paula Paíga ◽  
Lurdes Mendes ◽  
José Albergaria ◽  
Cristina Delerue-Matos

AbstractTotal petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.


2019 ◽  
Vol 19 (2) ◽  
pp. 347 ◽  
Author(s):  
Abubakar Tuhuloula ◽  
Suprapto Suprapto ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti

Contamination of soil by the activities of exploration, production, and disposal of oil waste into the environment causes serious damage to the environmental ecosystem, the target of processing by the bacteria as a model for remediation of oil contaminated site. Thus, the study was focused on determining the biodegradation percentage of extractable petroleum hydrocarbons as a function of the oil concentration. This research was conducted in a slurry bioreactor with mixed contaminated soil to water ratio of 20:80 (wt.%). A consortium of Bacillus cereus and Pseudomonas putida bacteria 10% (v/v) and 15% (v/v) with the ratio of 2:3, 1:1, and 3:2 was inserted into the slurry bioreactor and a single reactor was used as a control. The result of identification with an initial concentration of extractable petroleum hydrocarbons of 299.53 ng/µL, after 49 days of incubation for bacterial consortium 10% (v/v), the concentration was reduced to 85.31; 32.43; 59.74; and 112.22 ng/µL respectively and the biodegradation percentage was 71.5; 89.17; 80.05; and 62.54%. As for the bacterial consortium concentration of 15% (v/v) with the same ratio and control, the effluent concentration was 12.48; 7.72; 18.93 ng/µL, respectively or the biodegradation percentage was 95.83; 97.42; 93.68%.


2002 ◽  
Author(s):  
Susan S Sorini ◽  
John F Schabron ◽  
Joseph F Rovani, Jr
Keyword(s):  

2007 ◽  
Vol 17 (3) ◽  
pp. 358-362 ◽  
Author(s):  
Ben A. Faber ◽  
A. James Downer ◽  
Dirk Holstege ◽  
Maren J. Mochizuki

Soil testing is an important component of a plant nutrient management program for farmers, home gardeners, and agricultural service personnel. Results from five commercially available colorimetric soil test kits were compared with standard laboratory analyses for pH, nitrate–nitrogen (NO3), phosphorus (P2O5), and potassium (K2O) content for Salinas clay loam soil with three cropping histories. The kits ranked in accuracy (frequency of match with analytical laboratory results) in the following sequence: La Motte Soil Test Kit, Rapitest, Quick Soiltest, Nitty-Gritty, and Soil Kit at 94%, 92%, 64%, 36%, and 33%. NO3 was most accurately determined by Rapitest and Quick Soiltest, P2O5 by Rapitest, and pH by La Motte Soil Test Kit. K2O was determined with equal accuracy by all but Soil Kit. The composition of the extractants may be an important factor affecting the accuracy of the test kit. For example, all kit extractants for K2O were composed of the same chemical and matched analytical laboratory results 82% of the time. By contrast, kits using an acid-based extractant for NO3 analysis more frequently matched the analytical laboratory results than kits using a zinc-based extractant (P ≤ 0.0001). La Motte Soil Test Kit had the largest range of pH measures, whereas Rapitest was relatively easy to use and interpret and is a practical choice for home gardeners or landscapers; both were more than 90% accurate for this soil type. Although an important limitation of commercial test kits is the approximate or categorical value of nutrient content (i.e., low, medium, high), accurate test kits can yield results quickly and economically for improved nutrient management.


Jurnal Solum ◽  
2012 ◽  
Vol 9 (2) ◽  
pp. 61
Author(s):  
Nurmegawati Nurmegawati ◽  
W Wibawa ◽  
E Makruf ◽  
D Sugandi ◽  
T Rahman

An alternatif way to determine soil fertility level as well as to recommend fertilizer application is by using soil test kit. The kit can measure P and K status of soils as well as the pH value. The research was aimed to evaluate soil fertility level of paddy soil and to determine fertilizer recommendation for rice (variety ? IR64) having 5 t mill-dry seeds/ha at the soil in Kedurang Ilir and Seginim, South Bengkulu. Soil samples were collected in 24 villages in the area, then they were analyzed using the Test Kit. The results showed that (1) fertility level of paddy soil in Seginim was higher than that in Kedurang Ilir, (2) there were 4 packages of fertilizer doses (250- 100-100; 200-75-100; 250-50-100; 200-100-100 kg/ha for Urea-SP36-KCl, respectively) recommended in Kedurang Ilir, (3) there were 7 packages of fertilizer doses (250-100-100; 200-50-100; 250-75-100; 200-100-75; 200-75-100; 200-100-100; 250-50-100 kg/ha for Urea, SP36, and KCl, respectively) in Seginim.Key Words: paddy soil, fertility, soil test kit


Sign in / Sign up

Export Citation Format

Share Document