BLUE MASTER: USE OF COREXIT®9500 TO DISPERSE IFO 180 SPILL1

2001 ◽  
Vol 2001 (2) ◽  
pp. 815-819 ◽  
Author(s):  
Richard M. Kaser ◽  
Julie Gahn ◽  
Charlie Henry

ABSTRACT COREXIT®9500 was used to disperse 100 barrels (bbls) of Intermediate Fuel Oil (IFO) 180 30 nautical miles south of Galveston, Texas. The dispersant was highly effective in dispersing this heavy fuel oil. Efficacy was based on the fact that only 1.5 barrels of oil washed up on the beach in the form of tarballs a week later. No reports of oiled birds or wildlife related to the incident were received. The pre-authorization limits of the Regional Response Team (RRT) Region VI On-Scene Coordinator (OSC) Pre-Approved Dispersant Use Manual were outdated; COREXIT®9500 was placed on the National Contingency Plan (NCP) Product Schedule list of approved dispersants after the manual was written. COREXIT®9500 enables dispersal of heavier products than those originally considered by the RRT. The specific gravity of IFO 180 is 0.988 while the OSC Pre-Approved Dispersant Use Manual considered 0.953 an upper limit. The dispersant was applied outside the 6-hour time limit because an overflight showed little to no emulsification of the oil because of calm weather conditions. Although current conditions were calm, thunderstorms were expected to develop in the area that would provide the mixing action needed to enhance dispersal. The Unified Command considered this dispersant application a “cautious success.” The small amount of oil that reached the beach and the absence of oiled birds support a statement of success but, because of time limitations, Tier II SMART (Specialized Monitoring of Applied Response Technologies) data were not obtained to substantiate this conclusion. Following this case, RRT Region VI convened a committee to review the Pre-Approved Dispersant Use Manual, to evaluate whether the pre-approved protocols were still relevant, and to develop changes to the Pre-Approved Dispersant Use Manual if needed for consideration and approval by the RRT. At its January 2000 meeting, RRT Region VI approved several short-term changes to the manual and authorized continued work on several mid- and long-term revisions. These changes not only give the OSC more flexibility in choosing the right dispersant tools, but also give greater requirements to document dispersant operations.

2008 ◽  
Vol 2008 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Bernard Fichaut ◽  
Bahr Loubnan

ABSTRACT Following the bombardment of the Jyeh power station in Lebanon on July 16 2006, about 10 to 15000 tons of heavy fuel oil drifted 150 km northward all the way to the Syrian border. Because of the continuing war, the cleanup operations could not start until early September. The response consisted of conceptually dividing the coast line into several sectors managed by various operators; from Jyeh to Beyrouth, a 34.5 km stretch of shoreline, the treatment of beaches was assigned to the lebanese N.G.O “Bahr Loubnan’. In this area, 5.3 km of sandy and gravel beaches appeared to be heavily oiled on a width that seldomly exceeded 10 m. Oil was found buried down to a depth of 1.8 m at several locations. Additionnally oil was also found sunken in shallow waters in the breaker zones of numerous beaches. In order to minimize sediment removal and production of oily waste to be treated, it was decided to operate massive treatmenN in situ. After manual recovery of stranded oil, about 12,000 m of sediment including 1,000 m of cobbles have been relocated in the surf zone. Despite the lack of tides and of the generally calm weather conditions, surfwashing was very efficient due mainly to the fact that, in non tidal conditions, sediments are continuously reworked by wave açtion which operates at the same level on the beaches. Only 540 m of heavily oiled sand, was removed from beaches and submitted for further treatment. The lack of appropriate sorbents material in Lebanon to capture the floating oil released by surfwahing was also a challenge. This was addressed by using locally Nmanufactured sorbents, which proved to be very efficient and 60 m of sorbent soaked with oil were produced during the cleanup.


Author(s):  
Ronan Jézéquel ◽  
Julien Guyomarch ◽  
Justine Receveur ◽  
Stéphane Le Floch

On 16 March 1978, the oil tanker the Amoco Cadiz, transporting 223,000 tons of crude oil and 4,000 tons of bunker fuel oil, suffered a failure of her steering mechanism and ran aground on Portsall Rocks, on the Breton coast. The entire cargo spilled out as the breakers split the vessel in two, progressively polluting 360 km of French shoreline from Brest to Saint Brieuc. This was the largest oil spill caused by a tanker grounding ever recorded in the world. The consequences of this accident were significant, and it caused the French Government to revise its oil response plan (the Polmar Plan), to acquire equipment stocks (Polmar stockpiles), to impose traffic lanes in the Channel and to create Cedre. On 12 December 1999, the tanker Erika broke up and sank off the coast of Brittany (France) leading to the spill of 20,000 tons of a heavy fuel oil. 400 km of the French Atlantic coastline were polluted. Because of the characteristics of the oil (a very heavy fuel oil with a high content of light cracking oil) and the severe weather conditions (a centennial storm with spring tides) when the oil came on shore, the Erika spill was one of the most severe accidental releases of oil along the French coastlines. All types of habitat were concerned, and pollution reached the supratidal zone affecting terrestrial vegetation and lichens. In 2019, respectively 41 years and 20 years after these major oil spills affecting the French shoreline, a sampling round was conducted at two sites recorded to present some residual traces of oil. Samples of weathered oil were collected, extracted with methylene chloride and then purified through an alumina-silica microcolumn. SARA fractionation and GC-MS analyses were performed in order to assess respectively the total degradation of the weathered oil (amount of saturates, aromatics and polar fraction) and the specific degradation of nalkanes from n-C9 to n-C40, biomarkers (such as terpanes, hopanes and steranes) and PAHs (parents and alkylated derivatives).


2010 ◽  
Author(s):  
Herbert Roeser ◽  
Dilip Kalyankar

Ships are an integral part of modern commercial transport, leisure travel, and military system. A diesel engine was used for the first time for the propulsion of a ship sometime in the 1910s and has been the choice for propulsion and power generation, ever since. Since the first model used in ship propulsion, the diesel engine has come a long way with several technological advances. A diesel engine has a particularly high thermal efficiency. Added to it, the higher energy density of the diesel fuel compared to gasoline fuel makes it inherently, the most efficient internal combustion engine. The modern diesel engine also has a very unique ability to work with a variety of fuels like diesel, heavy fuel oil, biodiesel, vegetable oils, and several other crude oil distillates which is very important considering the shortage of petroleum fuels that we face today. In spite of being highly efficient and popular and in spite of all the technological advances, the issue of exhaust gas emissions has plagued a diesel engine. This issue has gained a lot of importance since 1990s when IMO, EU, and the EPA came up with the Tier I exhaust gas emission norms for the existing engine in order to reduce the NOx and SOx. Harsher Tier II and Tier III norms were later announced for newer engines. Diesel fuels commonly used in marine engines are a form of residual fuel, also know as Dregs or Heavy Fuel Oil and are essentially the by products of crude oil distillation process used to produce lighter petroleum fuels like marine distillate fuel and gasoline. They are cheaper than marine distillate fuels but are also high in nitrogen, sulfur and ash content. This greatly increases the NOx and SOx in the exhaust gas emission. Ship owners are trapped between the need to use residual fuels, due to cost of the large volume of fuel consumed, in order to keep the operation of their ships to a competitive level on one hand and on the other hand the need to satisfy the stringent pollution norms as established by the pollution control agencies worldwide. Newer marine diesel engines are being designed to meet the Tier II and Tier III norms wherever applicable but the existing diesel engine owners are still operating their engines with the danger of not meeting the applicable pollution norms worldwide. Here we make an effort to look at some of the measure that the existing marine diesel engine owners can take to reduce emissions and achieve at least levels prescribed in Tier I. Proper maintenance and upkeep of the engine components can be effectively used to reduce the exhaust gas emission. We introduced a pilot program on diesel engine performance monitoring in North America about two years ago and it has yielded quite satisfying results for several shipping companies and more and more ship owners are looking at the option of implementing this program on their ships.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2996-3010
Author(s):  
B. Louise Chilvers ◽  
Kerri J. Morgan ◽  
Phil Battley ◽  
Karin A. Sievwright

Abstract The value of rehabilitating oiled wildlife is an on-going global debate. On October 5, 2011, the cargo vessel C/V Rena grounded on Astrolabe Reef, New Zealand (NZ), spilling over 300 tonnes of heavy fuel oil. As part of the Rena oil spill response, 383 little blue penguins (LBP, Eudyptula minor) were captured, cleaned, rehabilitated and released back into a cleaned environment. Over the last four years, since the C/V Rena spill, we have undertaken survival, diving behaviour, diet and stress hormone response research on these and non-rehabilitated LBPs from the spill area to assess the success of the rehabilitation process, determine what lessons could still be learnt and to help determine if the environment has returned back to its natural state. Findings from this research showed that the survival was reduced for both rehabilitated and non-rehabilitated groups in the first six months following the spill and clean-up process however, the survival probabilities of both groups increased thereafter and remained high and stable over a two year period directly after the spill. The foraging behaviour and diet studies showed there were no foraging behaviour differences between rehabilitated and non-rehabilitated LBPs and the overall diving behaviour of these LBPs were similar, if not less energetic, than other LBPs in NZ, indicating that the environment appeared to have also returned to pre-oiling state. Concurrently, the stress hormone response study showed no differences between groups, suggesting the rehabilitation process for LBP did not affect their long term physiological responses to humans, meaning no habituation or excessively stress caused by humans over the long term. Together these results suggest the rehabilitation process and clean-up undertaken after the C/V Rena appears effective and helps validate the rehabilitation of oiled wildlife.


2005 ◽  
Vol 2005 (1) ◽  
pp. 613-617 ◽  
Author(s):  
Emilio García-Ladona ◽  
Jordi Font ◽  
Evilio del Río ◽  
Agustí Julià ◽  
Jordi Salat ◽  
...  

ABSTRACT On November 13th, 2002 the 26 year old tanker Prestige reported an emergency off the North Western Spanish coast (Galicia). The ship was carrying 77,000 tons of heavy fuel oil that started to be spilled while the vessel was towed away from the coast, affecting more than 900 km of shoreline. The location and the way the accident occurred implied a great challenge for the organization and coordinaton of actions to fight against the oil pollution. The site, just off the Finis terre cap, is a complex region from the oceanographic point of view and weather conditions, and this facilitated the fuel transport and spread over a great area. In order to take rapid preventive actions, it was crucial to have accurate spill trajectory forecasts covering direction and coastal impact. Under the coordination of public agencies and Spanish academic and research institutions, an operational monitoring system was built including wind and wave forecast, oil spill dispersion models, and visual inspection flights. Although the use of lagrangian floats was made in other incidents in the past (i.e Erika tanker) the characteristics of the Prestige accident indicated the need to deploy a relative great number of buoys as a major novelty respect to similar accidents in the past. The purpose of this contribution is to describe the operational actions performed during this particular accident, and to show the use of Lagrangian floats as an efficient procedure to improve the management and advice for such catastrophic events.


2019 ◽  
Vol 46 (7) ◽  
pp. 610 ◽  
Author(s):  
B. D. Gartrell ◽  
P. F. Battley ◽  
C. Clumpner ◽  
W. Dwyer ◽  
S. Hunter ◽  
...  

Abstract ContextSeabirds were the most common taxa captured alive as part of the oiled wildlife response to the grounding of the container vessel MV Rena in the Bay of Plenty, New Zealand. AimsTo describe the management of seabirds during the spill response, to outline the common problems encountered and to make recommendations for future responses. MethodsSeabirds were collected from 7 October 2011 to 14 January 2012. They were stabilised and underwent pretreatment, washing and rinsing procedures to remove oil, followed by swimming physiotherapy to restore waterproofing and long-term housing in outdoor aviaries. The birds were released in batches close to the original sites of capture once the wild habitat was cleaned. Key results428 live seabirds were admitted. There were two temporal peaks in admissions associated with the ship grounding and when the ship broke up. The majority of live birds were little penguins (Eudyptula minor; 394/428, 92%). Most seabirds admitted (393/428, 91.8%) were contaminated with heavy fuel oil, with the remainder (35/428, 8.2%) found unoiled but starving and/or exhausted or with injuries. Little penguins had lower mortality during rehabilitation (28/394, 7.1%) than other seabird species combined (27/34, 79.4%). Seabirds in poorer body condition on arrival had higher mortality, and unoiled birds were also more likely to die than oiled birds. In oiled little penguins, the degree of oiling on the plumage ranged from 1 to 100%, but mortality was not significantly associated with the degree of oiling (P=0.887). Pododermatitis affected 66% of little penguins. The most common causes of death (n=45) included weakness, anaemia and hypothermia in oiled seabirds (16/45, 35.6%), and starvation and weakness in unoiled seabirds (14/45, 31.1%). ConclusionsTotal survival to release was 87.1%, primarily influenced by the species involved and the body condition of the birds on arrival. Unoiled seabirds had higher mortality rates than oiled seabirds. ImplicationsOiled wildlife can be rehabilitated with good success, even when heavily oiled, or to a lesser extent, when found in poor body condition. More work is needed to refine species-specific rehabilitation protocols for seabirds, especially for those being admitted in emaciated body condition.


2001 ◽  
pp. 42-46
Author(s):  
Péter Jakab

New varieties and fertilization have significantly increased yields of maize in recent decades. It has to be taken into account however that the interactions and the balanced combination of cropping factors (ecological, biological and agrotechnical) are the main factors which determine yields. Weather conditions were rather unfavourable during the last decade. Extreme weather conditions occurred due to global warming; 6 of 10 years were plagued by drought. Consequently yields increased from 10-20% to 30-50%. In view of varieties the situation is advantageous, maybe the supply of hybrids is too high, nevertheless those hybrids need to be selected which are particularly well adjusted to the ecological conditions. Many technologies can be applied which vary according to intensity, but the balanced combination of cropping factors should be secured on the basis of the hybrid’s intensity. Among agrotechnical factors the compensation of nutrients and technological conditions were inadequate. These days farmers only use nitrogenous fertilizers consequently they significantly decrease the easily available P and K content of the soil which in long term leads to the deterioration of the soil’s productivity. The technological background is therefore important, because sufficient yields can only be expected if agrotechnical operations are carried out in the right time and quality. 


2007 ◽  
Vol 14 (4) ◽  
pp. 18-23
Author(s):  
Tadeusz Szelangiewicz ◽  
Katarzyna Żelazny

Mean long-term service parameters of transport ship propulsion system: Part I Screw propeller service parameters of transport ship sailing on a given shipping route During ship sailing on a given shipping route in real weather conditions all propulsion system performance parameters of the ship change along with changes of instantaneous total resistance and speed of the ship. In this paper results of calculations are presented of distribution function and mean statistical values of screw propeller thrust, rotational speed and efficiency as well as propulsion engine power output and specific fuel oil consumption occurring on selected shipping routes. On this basis new guidelines for ship propulsion system design procedure are formulated.


Ecotoxicology ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 861-879 ◽  
Author(s):  
Pamela Ruiz ◽  
Maren Ortiz-Zarragoitia ◽  
Amaia Orbea ◽  
Sjur Vingen ◽  
Anne Hjelle ◽  
...  

2007 ◽  
Vol 14 (4) ◽  
pp. 47-52
Author(s):  
Tadeusz Szelangiewicz ◽  
Katarzyna Żelazny

Mean long-term service parameters of transport ship propulsion system: Part II Propulsion engine service parameters of transport ship sailing on a given shipping route During ship sailing on a given shipping route in real weather conditions all propulsion system performance parameters of the ship change along with changes of instantaneous total resistance and speed of the ship. In this paper results of calculations are presented of distribution function and mean statistical values of screw propeller thrust, rotational speed and efficiency as well as propulsion engine power output and specific fuel oil consumption occurring on selected shipping routes. On this basis new guidelines for ship propulsion system design procedure are formulated.


Sign in / Sign up

Export Citation Format

Share Document