scholarly journals Preparation Method of Plan-View Transmission Electron Microscopy Specimen of the Cu Thin-Film Layer on Silicon Substrate Using the Focused Ion Beam with Gas-Assisted Etch

2015 ◽  
Vol 45 (4) ◽  
pp. 195-198 ◽  
Author(s):  
Ji-Soo Kim ◽  
Sang-Yeol Nam ◽  
Young-Hwan Choi ◽  
Ju-Cheol Park
Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


2008 ◽  
Vol 480 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Jeoung-Yeon Hwang ◽  
Sung-Ho Choi ◽  
Sang-Hoon Kim ◽  
Jin Jang ◽  
Dae-Shik Seo

1999 ◽  
Vol 564 ◽  
Author(s):  
L. M. Gignac ◽  
K. P. Rodbel ◽  
C. Cabral ◽  
P. C. Andricacos ◽  
P. M. Rice ◽  
...  

AbstractElectroplated Cu was found to have a fine as-plated microstructure, 0.05 ± 0.03 μm, with multiple grains through the film thickness and evidence of twins and dislocations within grains. Over time at room temperature, the grains grew to greater than 1 μm in size. Studied as a function of annealing temperature, the recrystallized grains were shown to be 1.6 ± 1.0 μm in size, columnar and highly twinned. The grain growth was directly related to the time dependent decrease in sheet resistance. The initial grain structure was characterized using scanning transmission electron microscopy (STEM) from a cross-section sample prepared by a novel focused ion beam (FIB) and lift-out technique. The recrystallized grain structures were imaged using FIB secondary electron imaging. From these micrographs, the grain boundary structures were traced, and an image analysis program was used to measure the grain areas. A Gaussian fit of the log-normal distribution of grain areas was used to calculate the mean area and standard deviation. These values were converted to grain size diameters by assuming a circular grain geometry.


1999 ◽  
Vol 5 (S2) ◽  
pp. 908-909
Author(s):  
J.L. Drown-MacDonald ◽  
B.I. Prenitzer ◽  
T.L. Shofner ◽  
L.A. Giannuzzi

Focused Ion Beam (FIB) specimen preparation for both scanning and transmission electron microscopy (SEM and TEM respectively) has seen an increase in usage over the past few years. The advantage to the FIB is that site specific cross sections (or plan view sections) may be fabricated quickly and reproducibly from numerous types of materials using a finely focused beam of Ga+ ions [1,2]. It was demonstrated by Prenitzer et al. that TEM specimens may be acquired from individual Zn powder particles by employing the FIB LO specimen preparation technique [3]. In this paper, we use the FIB LO technique to prepare TEM specimens from Mount Saint Helens volcanic ash.Volcanic ash from Mount Saint Helens was obtained at the Microscopy and Microanalysis 1998 meeting in Atlanta. TEM analysis of the ash was performed using the FIB lift out technique [1]. Ash powders were dusted onto an SEM sample stud that had been coated with silver paint.


2019 ◽  
Vol 26 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Kenta K. Ohtaki ◽  
Hope A. Ishii ◽  
John P. Bradley

AbstractA new transmission electron microscopy (TEM) specimen preparation method that utilizes a combination of focused ion beam (FIB) methods and ultramicrotomy is demonstrated. This combined method retains the benefit of site-specific sampling by FIB but eliminates ion beam-induced damage except at specimen edges and allows recovery of many consecutive sections. It is best applied to porous and/or fine-grained materials that are amenable to ultramicrotomy but are located in bulk samples that are not. The method is ideal for unique samples from which every specimen is precious, and we demonstrate its utility on fine-grained material from the one-of-a-kind Paris meteorite. Compared with a specimen prepared by conventional FIB methods, the final sections are uniformly thin and free from re-deposition and curtaining artifacts common in FIB specimens prepared from porous, heterogeneous samples.


1999 ◽  
Vol 587 ◽  
Author(s):  
Fabian Radulescu ◽  
John M. McCarthy

AbstractThe residual stress and the microstructure associated with it were studied in connection with the Pd-Ge ohmic contact formation on GaAs. Evaporated Pd (20 nm) / Ge (150 nm) / Pd (50 nm) thin film stacks on GaAs were annealed at various temperatures and the resulting microstructures were investigated by transmission electron microscopy (TEM). Micro-cantilever beam structures were fabricated with a focused ion beam (FIB) workstation and the residual stress present was calculated from the deflection magnitude. It was found that Ge solid phase epitaxial (SPE) growth on GaAs is associated with a stress relaxation of the thin film system. A new model that suggests the tensile stress induced by the intermediate layer may play an important role in the SPE growth mechanism is proposed. Other cases of solid phase heteroepitaxial growth with an intermediate medium, such as Ge/Au/Si, Co/Ti/Si (the TIME method) and Co/SiOx/Si (the OME method) are discussed in light of this newly proposed model. Also, the possibility of using controlled stress to engineer new methods for growing SPE based heterostructures will be presented.


Sign in / Sign up

Export Citation Format

Share Document