scholarly journals Genotoxicity Assessment of Potassium Bromate by Means of DNA Image Analysis on the Root Tip Nuclei of Allium sativum L.

Author(s):  
Hoda, A. Khatab ◽  
Nagat, S. Elhaddad ◽  
Samia Eissa

Allium sativum assay was widely used to assess the compound's cytotoxicity and genotoxicity on plants and animals. Only few studies analyzed the genotoxic effect of potassium bromated (KBrO3) on the DNA content of plant cells. DNA content assay is an efficient test for the measure of chromosomal DNA damages. Based on this approach the effect of KBrO3 on DNA content change was investigated in root tip nuclei of A. sativum. Different concentrations of food additives KBrO3. 3 g/l, 5 g/l 7 g/l and 9 g/l % were prepared and treatments were given. A. sativum root were incubated for 2, 6 and 24 hours and DNA image analysis of root tip nuclei was performed. The analysis was based on the measurement of the Mean Optical Density (MOD) which represents the cellular DNA content. The results showed that the KBrO3 significantly decreased of DNA content compared to the control at all concentrations and treatment periods in dose-dependent manner. The present study suggests that extensive use of food additives should be banned due to genotoxic effect on living cells. Therefore, there is an urgent need to evaluate potential mutagenic effects of KBrO3 on human.

1997 ◽  
Vol 111 (2) ◽  
pp. 141-144 ◽  
Author(s):  
S. K. Sarker ◽  
K. S. Patel

AbstractMorphometric measurements of nuclei may be of prognostic value in some cancers. In this present study we have evaluated the mean nuclear area (MNA) of 50 squamous cell carcinomas of the oral cavity (SCCOC) using computerized image analysis. Since chromosomal DNA content is a reflection of the DNA content in the nucleus, we have evaluated the relationship between MNA and chromosomal DNA. Thirteen tumours had a MNA greater than 49.9 μm2 and 37 had a MNA less than this. Six tumours were classified as hypodiploid, 29 as diploid and 15 as aneuploid. There were 44 node-negative patients and six node-positive. When comparing MNA in these groups, 50 per cent of node-positive patients had a larger MNA whilst only 20 per cent of the node-negative group had a large MNA. The correlation coefficient between MNA and DNA indices was r = 0.75. The greater nuclear size is possibly a reflection of a more aggressive tumour biology in the node-positive patients. We conclude that a large MNA may be a marker of aggressive tumour biology in this group. In the future, we aim to evaluate the prognostic significance of MNA in patients with SCCOC.


1998 ◽  
Vol 7 (5) ◽  
pp. 469-478 ◽  
Author(s):  
Jan P. Stegemann ◽  
John J. O'Neil ◽  
Don T. Nicholson ◽  
Claudy J.-P. Mullon

Accurate and consistent measurement of tissue volume is critical to performing many types of islet research; however, conventional visual determination of isolated islet yields through a microscope is heavily operator dependent. An improved method of islet volume determination using digital image analysis (DIA) was developed to remove operator bias and automate the islet counting process. A series of 140 porcine islet isolations were used to evaluate the DIA method in three separate stages. In Stage 1 ( n = 29 isolations), the conventional and DIA methods were correlated with two other independent islet quantitation methods: insulin extraction, and DNA extraction. It was found that volumes determined by DIA correlated more closely with insulin content and DNA content than did conventionally determined volumes. In Stages 2 and 3 ( n = 54 and 57 isolations, respectively), it was shown that an increase in the number of fields analyzed by DIA did not significantly improve the quality of the correlations. Inclusion of very small tissue (<50 fun in diameter), which is ignored in the conventional protocol affected yields by less than 10% and did not significantly improve the correlation with insulin or DNA content. Quantitation of isolated islet tissue volume using DIA has been shown to be rapid, consistent, and objective. In the laboratory, use of this method as the standard for islet volume measurement will allow more meaningful comparison of experimental results between centers. In the clinic, its use will allow more accurate dosing of transplanted tissue. © 1998 Elsevier Science Inc.


1993 ◽  
Vol 9 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Magdalena Czader ◽  
Anna Porwit ◽  
Stefan Söderhäll ◽  
Elisabeth Blennow ◽  
Susanne Widell ◽  
...  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


1998 ◽  
Vol 66 (9) ◽  
pp. 4123-4129 ◽  
Author(s):  
Philip J. Hill ◽  
Alan Cockayne ◽  
Patrick Landers ◽  
Julie A. Morrissey ◽  
Catriona M. Sims ◽  
...  

ABSTRACT In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of thesitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within thesitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start ofsitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus,S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.


1972 ◽  
Vol 50 (7) ◽  
pp. 1529-1545 ◽  
Author(s):  
Koji Iiyama ◽  
William F. Grant

Relative amounts of nuclear deoxyribonucleic acid (DNA) from telophase root tip nuclei and thin-layer chromatographic patterns of alcohol-soluble compounds from dry leaves were determined for seven diploids: Avena clauda, A. pilosa, A. ventricosa, A. strigosa, A. hirtula, A. wiestii, A. longiglumis; four tetraploids: A. barbata, A. magna, A. abyssinica, A. vaviloviana; and four hexaploids: A. sterilis, A. fatua, A. byzantina, and A. sativa, in order to elucidate species relationships. Variation in nuclear DNA content was correlated with differences in genomic constitution; a few exceptions are considered to reflect chromosomal polymorphism. The average DNA value of the hexaploid species approximated the sum of the DNA value for A. magna and the theoretical value of the B genome. Chromatographic patterns showed distinct variations between species but little correlation between number of compounds and DNA content. Chromatographic patterns of hexaploids showed close similarity with those of diploids and tetraploids, except species with modified C genomes (A. clauda, A. pilosa, A. ventricosa) and A. longiglumis. It is considered that A. clauda, A. pilosa, A. ventricosa, and A. longiglumis did not participate in the evolution of polyploid taxa. From their chromatographic profiles, A. wiestii, A. abyssinica, A. vaviloviana, and A. byzantina are very closely related. Both A. magna and the AABB tetraploid species appear to share two genomes in common with the hexaploids. Hence, the genomic constitutions AADD and AABBDD have been proposed for A. magna and the hexaploids, respectively. Six compounds from ethanol leaf extracts of A. sativa were identified as three apigenins, luteolin, ferulic acid, and p-coumaric acid.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Meiting Du ◽  
Yanhong Wang ◽  
Huize Chen ◽  
Rong Han

Abstract Background UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. Results A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. Conclusions The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document