scholarly journals Assessment of Genetic Diversity in Nigella (Nigella sativa L.) Collections Using Principle Component Analysis

Author(s):  
S. P. Singh ◽  
Avinash Kumar ◽  
Banshidhar . ◽  
Sandeep Kumar Suman ◽  
Ashutosh Kumar ◽  
...  

Seventeen land races of Nigella along with one released variety (Rajendra Shyama) as a check; collected at farmer’s field from different parts of Bihar were evaluated in Randomized Block Design with three replications at Seed production Farm, TCA, Dholi, Bihar during Rabi 2015-16 to identify  diverse Nigella genotypes. Principle component analysis (PCA) showed that first three PCs had >1.00 Eigen value and accounted to 84.71% of total variation. Rotated component matrix for various traits revealed that PC1 was strongly associated with secondary branches/plant followed by yield/plant, length of fruit, fruit per plant, primary branches/plant, height of the plant, days to 50% flowering and grains/plant. The traits that mostly contributed to PC2 were grains/plant followed by height of the plant and width of fruit whereas, days to maturity followed by width of fruit, height of the plant, days to 50% flowering and length of fruit contributed mostly to the PC3.  The characters that contributed most to the PC4 were height of the plant, fruit/plant and length of fruit. Therefore, intensive selection procedures can be adopted to bring about rapid improvement of above mentioned traits. The k-mean of different clusters indicated that genotype falling in cluster III possess high values for all the traits under study indicating their potentiality as a parent in hybridization programmes for further improvement of Nigella. Highest inter-cluster distance was noted between cluster III and V indicating the genetic diversity among genotypes of these two clusters. Therefore, genotypes from these two clusters are recommended to use in hybridization programmes for further improvement.

Author(s):  
Ch Sai Nayan Raju ◽  
Gabrial M. Lal ◽  
Ch. Damodar Raju

The present investigation was undertaken to study the 54 rice genotypes to estimate the diversity, among selected rice genotypes for yield and its component characters. The experiment was carried out during Kharif, 2020, in a randomized block design with three replications at the Indian Institute of Rice Research, Rajendranagar, Hyderabad voluntary center (Kampasagar), in Telangana State. The data was collected on characters viz and salt-tolerant score 0-9 scale. The 54 genotypes of rice were grouped into twelve clusters. Clusters with their genotypes are presented in. Cluster I had 15 genotypes, Cluster II had 13 genotypes, whereas Cluster III had 4 genotypes Cluster IV, V had 4 genotypes and cluster VI had 6 genotypes cluster VII had 1 genotype cluster VIII had three genotypes cluster Ⅸ, Ⅹ, Ⅺ had 1 genotypes cluster Ⅻ had 3 genotypes Highest inter-cluster distance was exhibited between clusters VIII and Ⅺ. and lowest cluster divergence found between the clusters Ⅳ and VII Greater the distance, wider the genetic diversity among the genotypes of those clusters. For high heterotic recombinants performing genotypes would be used as parents in the recombination breeding program. 


Author(s):  
Desai Tarjani B. ◽  
Madhu Bala ◽  
R.K. Patel

Background: Sunnhemp is a very important green manuring crop. The crop is utilized for various purposes like reducing soil erosion, improving soil properties and recycling plant nutrients. The knowledge regarding the crop is still not exploited, due to lack of research in this crop. So, the present study was conducted to know the extent of genetic diversity present in the crop. From the divergence analysis, it may be concluded that the genotypes belonging to different clusters separated by high estimated statistical distance may be used in the hybridization programme for developing high green biomass yielding sunnhemp varieties. Methods: A field experiment was conducted at the research farm of Department of Genetics and Plant Breeding, Navsari Agricultural University, Navsari, Gujarat with thirty sunnhemp genotypes to know the extent of genetic diversity by D2 analysis in a randomized block design during late Kharif 2017.Result: The analysis was conducted for D2 analysis and was concluded from D2 analysis that, the characters viz., days to 50% flowering, fresh weight of root nodules per plant, fresh weight of plant, root nodules per plant, leaf length, root length, dry weight of root nodules per plant, C: N ratio, internodes per plant, plant height and stem diameter contributed towards the genetic divergence. Traits like primary branches per plant and leaf area didn’t contribute towards genetic divergence. The thirty genotypes were grouped into seven clusters following Tocher’s method (Rao, 1952). The cluster III was largest having eleven genotypes. Cluster IV and cluster II was second largest which contained seven and five genotypes respectively. Cluster I and cluster V contained three and two genotypes respectively Cluster VI and VII had only one genotype. The intra cluster distance was more in cluster III and the inter cluster distance was maximum between cluster V and cluster VII.


Author(s):  
Vikas Khandelwal ◽  
A. Keerthika ◽  
Meenakshi Dhoot

Genetic diversity is an essential prerequisite for improving the genetic makeup of any crop. Inclusion of genetically diverse parents in hybridization programme helps in isolation of superior recombinants. So, an experiment was conducted to investigate the genetic diversity among 150 genotypes of sorghum [Sorghum bicolor (L.) Moench] Rajasthan during Kharif - 2013, 2014 and 2015 in a Randomized Block Design (RBD) with three replications. Present study reveals that the clustering pattern based on D2 statistics grouped 150 genotypes into 6 clusters, out of which cluster 1 shows the highest intra cluster value (142.62) followed by cluster 2 (119.47). While maximum inter cluster distance (i.e.652.68) was observed between cluster 5 and cluster 6, indicating there is presence of wide range of genetic diversity among the sorghum genotypes. Such genotypes with wide genetic diversity based on their mean values can either be utilized for breeding programmes for genetic improvement in sorghum or directly adopted as a variety.


Author(s):  
Vijay Pratap ◽  
Vijay Sharma ◽  
Hitesh Kumar ◽  
Kamaluddin . ◽  
Gaurav Shukla ◽  
...  

Background: Field pea is one of the important cool season grain legume crops cultivated in India. In this investigation, experimental material i.e. eighty germplasm lines of field pea with four checks (IPF 4-9, Adarsh, Ambika and IPFD 10-12) were evaluated to determine the estimates of genetic diversity in the test genotypes.Methods: The data were recorded on thirteen quantitative characters for the study of genetic diversity. The mean data of each characters were subjected to cluster analysis by using D2 Mahalanobis clustering method. The principle component analysis (PCA) for measuring genetic divergence was done by XLSTAT and R 4.0 statistical package. Result: Eighty-four germplasms including checks were categorized into five distinct clusters, indicates the occurrence of high genetic diversity in the evaluated set of germplasm. Between cluster III and IV highest inter-cluster distance was observed, indicates the maximum diversity among genotypes of these clusters. Considerable differences were observed for cluster mean among different distinct clusters for all the thirteen characters. The hybridization programme involving genotypes from cluster III and cluster IV may be used to isolate suitable segregants. Principal component analysis grouped different traits under study into thirteen principal components (PCs) in which only five PCs with eigen value greater than 1 accounted 70.97% of total variation present in genotypes. The traits falling to these five PCs may be given due importance in field pea improvement programmes.


Author(s):  
M. Karthikeyan ◽  
Sharad Pandey ◽  
Gideon Synrem ◽  
K. R. Saravanan

An experiment using twenty genotypes of chickpea (Cicer arietinum L.) was conducted during Rabi season of 2019-2020, to find the genetic diversity using D2 statistics. The experiment was laid out in randomized block design with three replications at the experimental field of Himgiri Zee University, Dehradun. The observations was recorded on  nine quantitative characters where five randomly selected plants were taken the average was computed while the traits days to 50 % flowering and days to 100 % maturity was taken from plot basis. Results revealed that the genotypes were grouped into 4 clusters where Cluster-I had fifteen genotypes and cluster II had three genotypes while one genotype each was present in cluster III and IV. The seed yield per plant contributed maximum towards genetic diversity (32.00 %) followed by plant height at maturity (14.00 %) and number of secondary branches (9.00 %). The maximum intra cluster distance was found in cluster II (164.691) indicating that the 15 genotypes including in the cluster II were most divergent. However, maximum inter cluster distance was noticed between cluster I and cluster II (313.247) which could be used in hybridizing program.


Author(s):  
Hina M. Makwana ◽  
P.R. Patel ◽  
D.G. Patel

Background: Clusterbean [Cyamopsis tetragonoloba (L.) Taub.] (2n=2x=14) is an under exploited legume belonging to family fabaceae. Clusterbean is a versatile legume crop cultivated mostly as animal feed, green manure green leaves as fodder, vegetable and cover crop. Clusterbean is a drought resistant, hardy, deep rooted annual legume crop. D2 statistics provides a measure of magnitude for divergence between two genotypes under comparison. For broadening the genetic base of cultivars, the genetic diversity present in cultivated and wild relatives must be explored. Generally, diverse germplasms are expected to give high hybrid vigor and hence, it necessitates studying genetic divergence among the existing varieties and genotypes for the identification of parents for hybridization programme. Methods: The present investigation was undertaken to study genetic variability in clusterbean [Cymopsis tetragonaloba (L.) Taub] with using a set of 40 genotypes at Agronomy Instructional Farm, Department of Agronomy, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar during Kharif 2019 in randomized block design with four replications. Mahalanobis (1928) D2 statistic was used for assessing the genetic divergence between different populations. Grouping of the genotypes in different clusters was done by using Tocher’s method. The inter-cluster distance was calculated by measuring the distance between clusters I and cluster II, between clusters I and cluster III, between clusters II and cluster III and so on. Likewise, one by one cluster was taken and their distances from other clusters were calculated. Result: The genetic diversity analysis revealed the formation of nine clusters suggested the presence of considerable genetic diversity among the 40 genotypes. The clustering pattern indicated that geographic diversity was not associated with genetic diversity. The analysis of per cent contribution of various characters towards the expression of total genetic divergence indicated that, the number of branches per plant followed by gum content, days to maturity, days to flowering contributed maximum towards total genetic divergence. On the basis of inter cluster distances, cluster IX was found to be more divergent. Therefore, it was concluded that the genotypes belonging to these cluster should be inter crossed in order to generate more variability.


Author(s):  
S.K. Sanwal ◽  
Hari Kesh ◽  
Jyoti Devi ◽  
B. Singh

Background: Garden pea is a cool season vegetable crop cultivated extensively throughout the world. Besides nutritional quality it also boosts soils through the fixation of atmospheric nitrogen. The most important task of pea breeding is to develop varieties with high and stable production, different maturity types and resistance against biotic and abiotic stresses. To fulfil these objectives, analysis of genetic diversity is the prerequisite to choose genetically diverse parents for a successful hybridization program and to know the source of genes for a particular trait within the available germplasm. Methods: A study was conducted at ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi during 2015, using principle component analysis, correlation analysis and stepwise regression analysis approaches to assess the genetic diversity present in 160 pea genotypes for the identification of diverse parents for use in crop improvement. Result: Based on the phenotypic data, three superior genotypes VRPD-2, VRPR-15 and VRP-292 were identified on the basis of pod yield, number of pods per plant, ten pod weight, pod length and number of seeds per pod whereas three other genotypes VRPE-45-1, VRPE-55 and VRPE-36 were found early flowering. Principle Component Analysis revealed that first four principle components contributed to 85% of the total variation so these four were given due importance for further explanation. Stepwise multiple regression analysis revealed that number of pods per plant, ten pod weight and number of internode for first pod were the best predictors of pod yield per plant.


Sign in / Sign up

Export Citation Format

Share Document