scholarly journals Diversification of Cropping Systems for Different Integrated Farming System Models under Irrigated Situation of Southern Telangana Zone, Telangana, India

Author(s):  
Ch. Pragathi Kumari ◽  
M. Goverdhan ◽  
Knight Nthebere ◽  
G. Kiran Reddy ◽  
S. H. K. Sharma ◽  
...  

A long-term field experiment was undertaken during the year 2019-20 (third year of the experiment) at college farm, AICRP on Integrated Farming Systems unit, PJTSAU, Hyderabad to evaluate productivity and profitability of cropping systems for different farming systems under irrigated situation on a sandy loam soil of Southern Telangana Zone (STZ), Telangana. Among the ten cropping systems evaluated, sweet corn – vegetable system (tomato) was found to be more remunerative with B:C ratio 3.30 followed by okra – marigold – beetroot system with B:C ratio 3.0. Among the ecological cropping systems for improving soil health, pigeonpea + greengram (1:7) – sesame cropping system recorded higher BC ratio (2.02) compared to Bt cotton + green gram (1:3) – groundnut cropping system (1.78). Out of the two systems evaluated to meet the household nutritional security, pigeon pea + groundnut (1:7) – fingermillet system recorded higher BC ratio (1.85) compared to pigeon pea + maize (1:3) – groundnut. Within the two fodder crops/cropping systems, fodder maize – lucerne system resulted in higher B:C ratio (1.65).

Author(s):  
Ch. Pragathi Kumari ◽  
M. Goverdhan ◽  
G. Kiran Reddy ◽  
Knight Nthebere ◽  
S. H. K. Sharma ◽  
...  

The present study was undertaken in the ongoing long-term experiment initiated during 2017 at experimental farm, College of Agriculture, Rajendranagar, Hyderabad. Soil samples collected from a depth of 0–15 cm was analysed for soil fertility parameters namely: available N, P and K. The results indicated that the different cropping systems had positive influence on improving the nutrient status (i.e., available N, P and K) significantly over the initial soil values (N: 112.20, P: 23.40 and K: 170.30 kg ha-1, respectively). These ten cropping systems were grouped in to five categories viz., pre-dominant cropping systems of the zone, ecological cropping systems, household nutritional security giving cropping systems, fodder security giving cropping systems and cropping systems involving high value crops. So that from each category, best cropping system can be identified and can be suggested to different integrated farming systems models. The maximum (221.60 and 221.57 kg ha-1) soil available nitrogen was obtained in Pigeon pea + Greengram (1:3) – Sesame after harvest of kharif and rabi, available phosphorus builds up was profound in Fodder maize – Lucerne (48.27 kg ha-1) and available K (207.63 kg ha-1) was higher in Rice –Maize cropping system after harvest. Fodder crops recorded significantly higher NPK uptake over other cropping systems.


Author(s):  
Ch. Pragathi Kumari ◽  
M. Goverdhan ◽  
G. Kiran Reddy ◽  
S. Sridevi

An Randamised Block Design (RBD) field investigation with ten crop sequences under irrigation with recommended package of practices in sandy loam soils of Southern Telangana Zone (STZ), Telangana was carried out during Kharif, Rabi and summer of 2018-2019 with an objective of the nutrient uptake and soil fertility status under different cropping systems and to assess agro economic benefit. These ten cropping systems were grouped in to five categories viz., pre dominant cropping systems of the zone, ecological cropping systems, household nutritional security giving cropping systems, fodder security giving cropping systems and cropping systems involving high value crops. So that from each category, best cropping system can be identified and can be suggested to different integrated farming systems models. In the context of farming systems, under high value crops such as Okra–Marigold–Beetroot system recorded significantly higher rice grain equivalent yield (36,434 kg ha-1) over other systems. Among the ecological cropping systems for improving soil health, Bt cotton + green gram (1:3) - groundnut cropping system was recorded significantly higher rice grain equivalent yield (14,080 kg ha-1) as  compared to pigeon pea + green gram (1:7) – sesame cropping system. Among the household nutritional security giving crops, pigeon pea + maize (1:3) – groundnut system was recorded higher rice grain equivalent yield (13,693 kg ha-1). Within the two fodder crops, fodder maize – lucerne system was resulted in higher rice grain equivalent yield (7,709 kg ha-1). Rice - maize and Bt cotton which were the pre-dominant cropping systems of the region wherein rice – maize system recorded comparatively higher rice grain equivalent yield (11,771 kg ha-1) than Bt cotton. Fodder systems were found to be more exhaustive than all other cropping systems. However, within two years of experimentation the changes in physic-chemical properties and soil fertility status were not significantly affected except organic carbon. Organic carbon was high (0.45 %) in case of pigeon pea + green gram (1:6) - sesame cropping system.


Author(s):  
Firdoz Shahana ◽  
M. Goverdhan ◽  
S. Sridevi ◽  
B. Joseph

A field experiment was conducted during 2016-17 at AICRP on Integrated Farming Systems, Regional Sugarcane and Rice Research Station, Rudrur to diversify existing rice-rice cropping system with less water requiring crops under irrigated dry conditions for vertisols of Northern Telangana Zone. The experiment was laid out with twelve cropping systems as treatments in Randomized Block Design (RBD) with three replications. The twelve combinations of cropping systems tested during kharif and rabi seasons were rice – rice (check), maize + soybean (2:4) – tomato, maize + soybean (2:4) - rice, maize - sunflower + chickpea (2:4), maize - chickpea, Bt cotton + soybean (1:2) on broadbed – sesame + groundnut (2:4), Bt cotton - sesame + blackgram (2:4), soybean – wheat, soybean – sunflower + chickpea (2:4), turmeric – sesame, turmeric + soybean (1:2) on flat bed – bajra and turmeric + soybean (1:2) on broadbed – sesame + blackgram (2:4). On system basis, significantly higher productivity in terms of rice equivalent yield (REY) of 23830 kg ha-1 was recorded with turmeric+soybean (1:2) BBF– sesame+blackgram (2:4) turmeric – sesame cropping sequence. However it was on par with turmeric – sesame and turmeric + soybean (1:2) on flat bed – bajra crop sequence with productivity of 23332 kg ha-1 and 21389 kg ha-1 respectively. Lower productivity was recorded with rice-rice cropping system (10725 kg ha-1). Significantly higher system net returns were recorded with Bt. cotton – sesame + black gram (2:4) on BBF (Rs222838 ha-1) closely followed by Bt Cotton + Soybean (1:2) (BBF) - Sesamum + Groundnut (2:4) (Rs221160 ha-1) and Maize+soybean (2:4)–tomato (Rs212909 ha-1). Lower system net returns were recorded in conventional rice-rice system (Rs88179 ha-1). Bt. cotton – sesame + black gram (2:4) and Bt Cotton + Soybean (1:2) (BBF)- Sesamum + Groundnut ((2:4) and Maize+soybean (2:4)–tomato were economically superior with REE of 152.71%, 150.81% and 141.45%. Rice- Rice cropping adopted by majority of farmers is less productive and economically inferior indicating wider scope of diversifying existing rice- rice cropping system with high productive, economically viable cropping systems in vertisols of Northern Telangana Zone.


2012 ◽  
Vol 48 (3) ◽  
pp. 399-413 ◽  
Author(s):  
SANJEEV KUMAR ◽  
N. SUBASH ◽  
S. SHIVANI ◽  
S. S. SINGH ◽  
A. DEY

SUMMARYFor efficient utilisation of available farm resources and to increase the income per unit of land, seven integrated farming systems were developed and different combinations of crop, animal, fish and bird were evaluated at three locations of Eastern India, viz. Patna, Vaishali and Munger districts, to sustain productivity, profitability, employment generation and nutrient recycling for lowland situations from 2007–2008 to 2009–2010. Among the tested different Integrated Farming System (IFS) models, viz. (i) crop + fish + poultry, (ii) crop + fish + duck, (iii) crop + fish + goat, (iv) crop + fish + duck + goat, (v) crop + fish + cattle, (vi) crop + fish + mushroom and (vii) crop alone, crop + fish + cattle model recorded higher rice (Oryza sativa L.) grain equivalent yield (RGEY) (18.76 t/ha) than any other combinations, but in terms of economics, crop + fish + duck + goat model supersedes over all other combinations. The highest average net returns (USD 2655/yr) were recorded from crop + fish + duck + goat system over all other systems tested here. Higher average employment of 656 man-days/year were also recorded from crop + fish + duck + goat system because of better involvement of farm family labours throughout the year. Based on a sustainability index (SI) derived from different models, crop + fish + duck + goat system was found superior with a maximum sustainability for net returns (73.1%), apart from the addition of appreciable quantity of nitrogen, phosphorus and potassium into the system in the form of recycled animal and plant wastes. The wastes/by-products of crop/animals were used as input for another component to increase the nutrient efficiency at the farm level through nutrient recycling. Results on integration of different components with crop depending upon suitability and preferences were found encouraging, and to enhance the productivity, economic returns, generating employment for farm families and maintaining soil health of the farm, the crop + fish + duck + goat combination could be adopted in the eastern part of India than cultivating the crop alone on the same piece of land under irrigated condition. Addition of organic residues in the form of animal and plant wastes could also help in improving the soil-health and thereby productivity over a longer period of time with lesser environmental hazards. The livelihoods of small and marginal farmers could be improved by their adoption of IFS technologies on a larger scale, as they provide scope to employ more labour year-round.


Author(s):  
Knight Nthebere ◽  
S. H. K. Sharma ◽  
Ch. Pragathi Kumari ◽  
A. Aziz Qureshi

The present study was undertaken in the ongoing long-term experiment initiated during 2017 at the experimental farm of College of Agriculture, Rajendranagar, Hyderabad. Soil samples were collected from two depths (0–15 and 15–30 cm) and analysed for soil fertility parameters namely: available N, P, K and S. The results indicated that the different cropping systems had positive influence on improving the nutrient status (i.e., available N, P and K) significantly over the initial soil values (N: 112.20, P: 23.40 and K: 170.30 kg ha-1, respectively). Interestingly, it was noticed that improved availability of nutrients (N, P, K and S) was more profound in the upper soil layer (0–15 cm) compared to lower depth (15–30 cm) in all the cropping systems (CS). The CS: Bt cotton + Greengram – Groundnut had recorded high nitrogen (N=221.60 kg-1), CS: Fodder maize – Lucerne recorded high in available P (P=49.13 kg-1) and CS: Fodder sorghum + Fodder cowpea – Horsegram – Sunhemp recorded high in K and S (K=208.10 kg-1, S= 172.0 kg S ha-1) after kharif season. While, CS: Pigeon pea + Greengram – Sesame showed high for N (N=228.57 kg-1), CS: Fodder maize – Lucerne for high P (P=48.27 kg-1) and Rice – Maize recorded high for K and S (K=207.63 kg-1 and S= 95.40 kg S ha-1) in top soil layer (0–15 cm) after harvest of rabi compared to lower soil depth (15–30 cm).


Author(s):  
Uriel D. Menalled ◽  
Tim Seipel ◽  
Fabian D. Menalled

Abstract Cropping system characteristics such as tillage intensity, crop identity, crop-livestock integration and the application of off-farm synthetic inputs influence weed abundance, plant community composition and crop-weed competition. The resulting plant community, in turn, has species-specific effects on soil microbial communities which can impact the growth and competitive ability of subsequent plants, completing a plant–soil feedback (PSF) loop. Farming systems that minimize the negative impacts of PSFs on subsequent crop growth can increase the sustainability of the farming enterprise. This study sought to assess the individual and combined impact of the cropping system (certified organic-grazed, certified organic till and conventional no-till) and crop sequence [pairwise rotations with safflower (Carthamus tinctorius), yellow sweet clover (Melilotus officinalis) and winter wheat (Triticum aestivum)] on the PSF magnitude and direction. All cropping systems followed the same 5-year rotation and had completed one full rotation before soil was sampled. In a greenhouse setting, a sterile soil mix was inoculated with field soil collected from all systems and three crops. The PSF study consisted of two stages (conditioning and response phases) that mimicked the rotation stages occurring in the field. PSFs were calculated by comparing the biomass of the response phase plants grown in inoculated and uninoculated soils. The farm management system affected PSFs, inferring that tillage reduction can encourage more positive PSFs. Crop sequence did not affect PSF but interacted strongly with the farm system. As such, the effects of the farming system on PSFs are best illustrated when taken into account with the identity of the previous and current crops of a cropping sequence.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SANJEEV KUMAR ◽  
SHIVANI . ◽  
S. K. SAMAL ◽  
S. K. DWIVEDI ◽  
MANIBHUSHAN .

Integration of different components viz. livestock, fishery, horticulture, mushroom etc. along with field crops not only enhanced productivity but by-products (waste) of one component act as input for another component through resource recycling within the system. Six integrated farming systems models with suitable combinations of Crop, vegetables, fruit trees, fish, livestock, mushroom etc. were made and evaluated at the experimental farm of ICAR Research Complex for Eastern Region, Patna during 2012-16 for harness maximum income, nutrient recycling and employment. Among six combinations, crop + fish + duck + goat resulted as most profitable combination in terms of productivity (RGEY- 22.2t), net income (Rs. 2,15,900/ha), additional employment (170 days/year) with income sustainability index (ISI) by 90.2. Upon nutrient recycling prepared from different wastes from the system Crop + fish + duck + goat combination added N (56.5 kg), P (39.6 kg) and K (42.7 kg) into the soil and reduced the cost of cultivation by 24 percent and was followed by crop + fish + goat combination. Crops grown under IFS mode with different types of manures produced 31 percent higher yield over conventional rice- wheat system. The contribution of crops towards the system productivity ranged from 36.4 to 56.2 %, while fish ranged from 22.0-33.5 %; for goat 25.4-32.9 %; for poultry 38.7 %; for duck 22.0-29.0 %; for cattle 32.2% and for mushroom 10.3 %.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Federica Zanetti ◽  
Barbara Alberghini ◽  
Ana Marjanović Jeromela ◽  
Nada Grahovac ◽  
Dragana Rajković ◽  
...  

AbstractPromoting crop diversification in European agriculture is a key pillar of the agroecological transition. Diversifying crops generally enhances crop productivity, quality, soil health and fertility, and resilience to pests and diseases and reduces environmental stresses. Moreover, crop diversification provides an alternative means of enhancing farmers’ income. Camelina (Camelina sativa (L.) Crantz) reemerged in the background of European agriculture approximately three decades ago, when the first studies on this ancient native oilseed species were published. Since then, a considerable number of studies on this species has been carried out in Europe. The main interest in camelina is related to its (1) broad environmental adaptability, (2) low-input requirements, (3) resistance to multiple pests and diseases, and (4) multiple uses in food, feed, and biobased applications. The present article is a comprehensive and critical review of research carried out in Europe (compared with the rest of the world) on camelina in the last three decades, including genetics and breeding, agronomy and cropping systems, and end-uses, with the aim of making camelina an attractive new candidate crop for European farming systems. Furthermore, a critical evaluation of what is still missing to scale camelina up from a promising oilseed to a commonly cultivated crop in Europe is also provided (1) to motivate scientists to promote their studies and (2) to show farmers and end-users the real potential of this interesting species.


2019 ◽  
Vol 56 (1) ◽  
pp. 26-36
Author(s):  
Muhammad Asghar Shah ◽  
Mubshar Hussain ◽  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Sami Ul-Allah ◽  
...  

AbstractIn cotton–wheat cropping system of Pakistan, wheat (Triticum aestivum L.) is harvested in late April; however, the optimum sowing time of Bt cotton is mid-March. This indicates a time difference of 4–6 weeks between the harvest of wheat and cotton sowing. It is hypothesized that this overlapping period may be managed by transplanting cotton seedlings (30–45 days old) in late April, after the harvest of wheat due to better performance of already established seedlings. To this end, this study was conducted to evaluate the allometric traits and fiber quality of transplanted Bt cotton after harvesting wheat in the cotton–wheat cropping system. The Bt cotton–wheat cropping systems were flat sown wheat (FSW)–conventionally tilled cotton, FSW–zero tilled cotton, ridge sown wheat–ridge transplanted cotton using 30- and 45-days-old seedlings, and bed sown wheat (BSW)–bed transplanted cotton (BTC) also using 30- and 45-days-old seedlings. The study was conducted at Vehari and Multan in Punjab, Pakistan. Bt cotton in BSW–BTC with 45-days-old seedlings showed better performance for allometric (leaf area index; (LAI), net assimilation rate; (NAR), and crop growth rate; (CGR)), seed cotton yield, and fiber traits (fiber uniformity, fiber length, fiber strength, and fiber fineness) in comparison to other treatments. Most of the fiber quality traits were positively correlated with allometric traits and biological yield (dry matter yield at maturity) at both locations, except correlations of CGR and LAI with fiber fineness and fiber length and NAR with fiber length. As plant growth and fiber quality of transplanted cotton was significantly higher than conventionally grown cotton, our data indicate transplanting is an interesting management practice for improving productivity in wheat–cotton cropping systems.


Soil Research ◽  
1999 ◽  
Vol 37 (2) ◽  
pp. 279 ◽  
Author(s):  
M. J. Bell ◽  
P. W. Moody ◽  
S. A. Yo ◽  
R. D. Connolly

Chemical and physical degradation of Red Ferrosols in eastern Australia is a major issue necessitating the development of more sustainable cropping systems. This paper derives critical concentrations of the active (permanganate-oxidisable) fraction of soil organic matter (C1) which maximise soil water recharge and minimise the likelihood of surface runoff in these soils. Ferrosol soils were collected from commercial properties in both north and south Queensland, while additional data were made available from a similar collection of Tasmanian Ferrosols. Sites represented a range of management histories, from grazed and ungrazed grass pastures to continuously cropped soil under various tillage systems. The concentration of both total carbon (C) and C1 varied among regions and farming systems. C1 was the primary factor controlling aggregate breakdown, measured by the percentage of aggregates <0·125 mm (P125) in the surface crust after simulated rainfall. The rates of change in P125 per unit change in C1 were not significantly different (P < 0·05) for soils from the different localities. However, soils from the coastal Burnett (south-east Queensland) always produced lower P125 (i.e. less aggregate breakdown) than did soils from the inland Burnett and north Queensland locations given the same concentration of C1. This difference was not associated with a particular land use. The ‘critical’ concentrations of C1 for each region were taken as the C1 concentrations that would allow an infiltration rate greater than or equal to the intensity of a 1 in 1 or 1 in 10 year frequency rainfall event of 30 min duration. This analysis also provided an indication of the risk associated with the concentrations of C1 currently characterising each farming system in each rainfall environment. None of the conventionally tilled Queensland Ferrosols contained sufficient C1 to cope with rainfall events expected to occur with a 1 in 10 frequency, while in many situations the C1 concentration was sufficiently low that runoff events would be expected on an annual basis. Our data suggest that management practices designed both to maximise C inputs and to maintain a high proportion of active C should be seen as essential steps towards developing a more sustainable cropping system.


Sign in / Sign up

Export Citation Format

Share Document