scholarly journals Impact of Climate Change on Worlds Economy and Hydrological System

Author(s):  
Sajid Ali ◽  
Inayatullah Jan

The Mediterranean region appears to be particularly responsive to global and climate change. The global mean temperature has increased by 0.8°C compared with preindustrial levels while Europe has warmed more than the global average, especially in the Mediterranean, the north-east region, and mountain areas. Increasingly drier conditions are observed in the Mediterranean region both in the wet and in the dry season (~20%) with an increasingly irregular precipitation in both seasons (~ 40% in the dry season). The annual river flows have also decreased in the Mediterranean region, a difference projected to exacerbate due to climate and global change, which made the Mediterranean region most prone to an increase in drought hazard and water stress. Iberian Peninsula has been already affected by several major droughts, e.g. the recent one in 2005. These driving forces of global change impacts on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their impacts on the human society and economy, makes it an important issue on the EU agenda. This thesis is an approach to quantify and analyze the water quantity, hydrological ecosystem services, and water supply in temperate regions under environmental changes. A hydrological model is developed for a low flow Mediterranean river (Francolí River) to assess the water allocation situation in the river basin using MIKE BASIN. Since the Mediterranean regions are hard hit by the changes in the global climatic patterns, the hydrological model focuses on the water distribution system & flow in the region.

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2015 ◽  
Vol 12 (8) ◽  
pp. 8459-8504 ◽  
Author(s):  
M. Fader ◽  
S. Shi ◽  
W. von Bloh ◽  
A. Bondeau ◽  
W. Cramer

Abstract. Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1187 ◽  
Author(s):  
Zhenhui Wu ◽  
Yadong Mei ◽  
Junhong Chen ◽  
Tiesong Hu ◽  
Weihua Xiao

In this study, a coupled water–energy balance equation at an arbitrary time scale was proposed as an extension of the Budyko hypothesis. The second mixed partial derivative was selected to represent the magnitude of the interaction. The extended hydrological sensitivity method was used to quantitatively evaluate the impacts of climate change, anthropogenic activities, and their interaction on dry season runoff in the Lhasa River. In addition, an ABCD model, which is a monthly hydrological model included a snowmelt module, was used to calculate the change in soil water and groundwater storage. The Mann–Kendall test, Spearman’s test, dynamic linear model (DLM), and Yamamoto’s method were used to identify trends and change points in hydro-climatic variables from 1956–2016. The results found that dry season runoff increased non-significantly over the last 61 years. Climate change, which caused an increase in dry season runoff, was the dominant factor, followed by anthropogenic activities and their interaction, which led to varying degrees of decrease. This study concluded that the methods tested here performed well in quantifying the relative impacts of climate change, anthropogenic activities, and their interaction on dry season runoff change.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5307
Author(s):  
Antonio Moretti ◽  
Charalampos Pitas ◽  
George Christofi ◽  
Emmanuel Bué ◽  
Modesto Gabrieli Francescato

The paper presents a survey on the situation in terms of solutions for grid integration throughout the Mediterranean area in the framework of climate change and energy transition. The objective of the study is focused on Mediterranean region connectivity initiatives in the context of the broader vision of an interconnected European–Mediterranean (Euro–Med) power system for a future low-carbon energy system as the fundamental objective of Med-TSO, the Association of the Mediterranean Transmission System Operators (TSOs) for electricity. The analysis examines how the power grid connectivity evolves from now on to 2030, describing the progress made to date in integrating the power grids of the Mediterranean region as well as the future possibilities for a more integrated power grid covering the whole region. The research, conducted within Mediterranean Project II of Med-TSO, includes an overview on the current situation of the interconnections and the proposal for the 2030 interconnections Master Plan, coherent with the national development plans (NDPs) and shared energy scenarios for the whole region at the same horizon of 2030. It conducts an assessment of the gap between the current and the 2030 expected situation, taking into account the energy transition toward 2030 objectives resulting from the achievements of climate change pledges, local governmental policies and EU strategy for neighboring countries and Africa. The solutions survey includes technical solutions, procedures and rules to improve systems’ integration and increase regional electricity exchanges in Med-TSO countries, and is aimed at achieving a higher quality of services and better efficiency of energy supply in Med-TSO member countries in the framework of the expected energy transition. The main scope is to present solutions that will be made available due to maturity and experience in the coming decade, specifically: high voltage direct current (HVDC) transmission technologies, energy storage, sectors coupling, smart grid technologies and services, inter-TSO and transmission–distribution cooperation platforms, etc. The article presents two case studies: the island paradigm and a new cross-border interconnection project of common interest. Finally, the post-pandemic core role of TSOs, which has become more relevant than ever, is transformed into a key-enabler of energy transition towards a sustainable, resilient and innovative climate-neutral recovery.


2020 ◽  
Vol 181 ◽  
pp. 102809 ◽  
Author(s):  
Eduardo Aguilera ◽  
Cipriano Díaz-Gaona ◽  
Raquel García-Laureano ◽  
Carolina Reyes-Palomo ◽  
Gloria I. Guzmán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document