scholarly journals Effect of Mulches on Soil Properties, Leaf Nutrient Status and Weed Growth of Pomegranate under Rainfed Conditions

Author(s):  
Bhawna Kaushal ◽  
D. D. Sharma ◽  
M. A. Kuchay

The present study entitled "Effect of mulches on soil properties, leaf nutrient status and weed growth of pomegranate under rainfed conditions" at the experimental farm of HR&TS and KVK Kandaghat at Jadari, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, during 2017-2018. The different mulches like Nylon mulch mat, Silver polyethylene mulch, Black polyethylene mulch, Red polyethylene mulch and Coir mulch mat, Grass mulch were used in this investigation. Results revealed that maximum soil temperature and moisture were recorded in black polyethylene mulch. Nylon mulch mat was found effective in controlling weed growth followed by silver polyethylene mulch and black polyethylene mulch. Soil and leaf nutrient content were significantly higher found under grass mulch. The soil hydrothermal regimes were significantly higher under black polyethylene mulch. This provides better prevention of soil water evaporation and retaining soil moisture under rainfed conditions.

2021 ◽  
Vol 39 (3) ◽  
pp. 115-122
Author(s):  
Zachary Singh ◽  
Adam Maggard ◽  
Rebecca Barlow ◽  
John Kush

Abstract Longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm.) are two southern pine species that are popular for producing pine straw for landscaping. The objective of this research was to determine the response of soil properties and weed growth to the application of pine straw. Longleaf pine, slash pine, and two non-mulched controls (with and without chemical weed control) were tested. Volumetric soil water content, soil nutrients, soil temperature, weed biomass, and seedling growth were measured. Compared to non-mulched controls, both longleaf and slash pine plots had a greater soil moisture during extended periods without rainfall in the full sun environment. When soil temperatures increased, mulched plots had lower soil temperature relative to non-mulched plots. Soil pH and soil nutrients were generally similar between pine straw types with few significant differences in measured variables. Both pine straw treatments reduced weed growth and longleaf pine maintained a greater straw depth over the study period compared to slash pine, but no differences were observed for decomposition. These results indicate that longleaf pine straw and slash pine straw perform equally as well in terms of increasing soil moisture, moderating soil temperature, and reducing weed growth compared to not using mulch. Index words: Pinus elliottii, Pinus palustris, organic mulch, soil properties, landscaping. Species used in this study: Shumard oak, Quercus shumardii Buckl., Eastern redbud, Cercis canadensis L.


Nematology ◽  
2015 ◽  
Vol 17 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Hugues Baimey ◽  
Lionel Zadji ◽  
Leonard Afouda ◽  
Maurice Moens ◽  
Wilfrida Decraemer

The influence of three pesticides on the viability and infectivity of four Beninese isolates of entomopathogenic nematodes (EPN), Heterorhabditis indica Ayogbe1, H. sonorensis Azohoue2, H. sonorensis Ze3, and Steinernema sp. Bembereke, was determined. The impact of both soil temperature and soil moisture on the virulence of these EPN to Trinervitermes occidentalis was investigated in laboratory assays. The effect of EPN-infected Galleria mellonella larvae on underground populations of Macrotermes bellicosus was also examined. All tested Heterorhabditis species were more tolerant to glyphosate and fipronil than the Steinernema species. Heterorhabditis sonorensis Azohoue2, showed the best results with 63.2% termite mortality at a soil temperature of 35°C. The increase of soil moisture to 20% (w/w) did not negatively influence the virulence of tested EPN. The underground populations of 71% or 60% treated nests were controlled by H. sonorensis Azohoue2- or H. indica Ayogbe1-infected G. mellonella larvae, respectively.


HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 418-422 ◽  
Author(s):  
Joan R. Davenport ◽  
Robert G. Stevens

Leaf yellowing (chlorosis) is not unique to Concord grape, yet occurs with great intensity in the arid, irrigated central Washington state growing region. Past research on nutrients has not shown a clear cause and effect relationship between soil and/or plant nutrient status and chlorosis. We investigated both nutritional and climatic conditions for their association with chlorosis occurrence. Six vineyard sites were selected, 2 each with no history of chlorosis (achlorotic), occasional chlorosis, and annually reoccuring chlorosis (chronically chlorotic) and monitoring sites in chlorotic and achlorotic areas were established. Nutrient elements K, Ca, Mg, Mn, and Cu plus the nonnutrient elements Na and Al were monitored in soil (surface, 0 to 30 cm, and subsurface, 30 to 75 cm, depths) and leaf tissue (both petioles and blades) prebud burst (soil only), at bloom, and preveraison at 650 degree days at all vineyard sites for the 2001, 2002, 2003, and 2004 growing seasons. In addition, both soil temperature and moisture were monitored. To evaluate the intensity of chlorosis at each site, chlorotic vines were GPS marked and mapped post-bloom each year. Overall, chlorosis incidence was more widespread in 2001 and 2003 than in 2002 or 2004. There were few relationships with soil or tissue nutrient concentrations. However, soil moisture was consistently higher and soil temperature lower in the period between bud burst and bloom in the chlorotic sites. This suggests that a cold, wet soil environment prior to bloom impedes grape root growth and/or function and triggers plant chlorosis. Yearly differences strongly support this finding.


2012 ◽  
Vol 92 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Chunyu Song ◽  
Xingyi Zhang ◽  
Xiaobing Liu ◽  
Yuan Chen

Song, C., Zhang, X., Liu, X. and Chen, Y. 2012. Effect of soil temperature and moisture on soil test P with different extractants. Can. J. Soil Sci. 92: 537–542. Temperature and moisture are important factors affecting adsorption, transformation and the availability of soil phosphorus (P) to plants. The different temperatures and moisture contents at which soil is sampled might affect the results of soil test P (STP). In order to evaluate the effect of the temperature and moisture, as well as the fertilization level, on the results of soil test P, an incubation study involving three soil temperatures (5, 10, and 20°C), and three soil moisture contents (50, 70, 90% of field water-holding capacity) was conducted with Chinese Mollisols collected from four fertilization treatments in a long-term experiment in northeast China. Four soil P test methods, Mehlich 3, Morgan, Olsen and Bray 1 were used to determine STP after a 42-d incubation. The effect of temperature and moisture on STP varied among soil P tests. Averaged across the four fertilization treatments, the temperature had significant impact on STP, while the responses varied among soil P test methods. Mehlich 3, Morgan and Bray 1 STP decreased and Olsen STP increased with increase in temperature. Effect of soil moisture was only significant for Mehlich 3 P and Olsen P. Soil temperature had greater impact on STP than soil moisture content. The responses of the Olsen method to temperature differed from the other three methods tested. The interaction between soil temperature and soil moisture on soil test P was only significant for Mehlich 3 P. Fertilization level does not affect the STP in as a clear pattern as the temperature and moisture varied for all four methods. Consistent soil sampling conditions, especially the soil temperature, appear to be the first step to achieve a reliable STP for any soil P test.


2008 ◽  
Vol 98 (10) ◽  
pp. 1144-1152 ◽  
Author(s):  
B. M. Wu ◽  
K. V. Subbarao

Extensive studies have been conducted on the carpogenic germination of Sclerotinia sclerotiorum, but carpogenic germination in S. minor has not been studied adequately. It remains unclear why apothecia of this pathogen have seldom been observed in nature. In this study, a new method was developed to produce apothecia in the absence of soil or sand, and carpogenic germination without preconditioning was recorded for 95 of the 96 S. sclerotiorum isolates tested. Carpogenic germination of the two species was compared under a variety of temperature, soil moisture, burial depths, and short periods of high temperature and low soil moisture. The optimal temperatures for rapid germination and for maximum germination rates were both lower for S. minor than for S. sclerotiorum. The temperature range for carpogenic germination was also narrower for S. minor than for S. sclerotiorum. A 5-day period at 30°C, either starting on the 10th or 20th day of incubation, did not significantly affect carpogenic germination of S. sclerotiorum. For both S. minor and S. sclerotiorum, the percentage of carpogenically germinated sclerotia increased as soil water potential increased from –0.3 to –0.01 MPa. In the greenhouse, a 10- or 20-day dry period completely arrested carpogenic germination of S. sclerotiorum, and new apothecia appeared after an interval of 35 days following rewetting, similar to the initial carpogenic germination regardless of when the dry period was imposed. In naturally infested fields, the number of sclerotia in 100 cc of soil decreased as depth increased from 0 to 10 cm before tillage, but became uniform between 0 and 10 cm after conventional tillage for both species. Most apothecia of S. minor were, however, produced from sclerotia located at a depth shallower than 0.5 cm while some apothecia of S. sclerotiorum were produced from sclerotia located as deep as 4 to 5 cm. These results provide the much needed information to assess the epidemiological roles of inoculum from sexual reproduction in diseases caused by the two Sclerotinia species in different geographical regions. However, more studies on effects of shorter and incompletely dry periods are still needed to predict production of apothecia of S. sclerotiorum in commercial fields under fluctuating soil temperature and moisture.


1968 ◽  
Vol 4 (2) ◽  
pp. 143-150 ◽  
Author(s):  
D. Hopkinson

SummaryExperiments in bulbil nurseries and field sisal were carried out in N.E. Tanganyika, 5°S, 39°E, 200 m. above sea level, at a mean annual rainfall of 1160 mm., on deep red loam. The discussion covers the establishment of sisal through a polythene mulch, the control of weed growth, the persistence of polythene of different thicknesses and from different sources, and some effects on growth of the sisal and on soil properties. A mulch of black polythene improved the growth of bulbil nurseries by 30 per cent or more, due to conservation of soil moisture and elimination of weed competition and disturbance associated with the removal of weeds by hoeing. For nurseries 150-gauge material was preferred, but there were important differences in the persistence of material purchased from two sources. Where black polythene is used in a nursery the density can be increased from 80,000 to 110,000 plants per hectare, to help offset the high cost of the material. A mulch of 250-g. black polythene controlled weeds in field sisal but did not improve growth.


2020 ◽  
Author(s):  
Aliva Nanda ◽  
Sumit Sen

<p>Hillslope-scale studies play a vital role in understanding the spatial and temporal dynamics of hydrological fluxes of an ungauged watershed. The linkage between static (i.e. topography, soil properties and landuse) and dynamic (i.e. runoff, soil moisture and temperature) characteristics of a hillslope provides a new insight towards hillslope processes. Thus, two Lesser Himalayan hillslopes of Aglar watershed have been selected in two different landuses (grass-covered and agro-forested) and aspects (south and north). In this study, we analyzed the different hydrological fluxes i.e. rainfall, runoff, soil moisture and soil temperature along with the soil properties to get a holistic understanding of hillslope processes. We used the soil moisture dynamics and soil hydraulic conductivity as the major components to derive the hillslope hydrological connectivity. It was observed that the grassed (GA) hillslope generates less runoff than the agro-forested (AgF) hillslope as the upslope runoff of GA hillslope re-infiltrated in the middle portion due to higher soil hydraulic conductivity and surface resistance. Further, this explains that the runoff contributing areas are located at the lower and upper portions of hillslopes due to the presence of low soil hydraulic conductivity zones.  As both the hillslopes are dominated with Hortonian overland flow, the negative correlation was found between topographic indices (TWI) and soil moisture and positive correlation was noticed between soil hydraulic conductivity. Higher runoff (less infiltration) from AgF hillslope results in a higher negative correlation between TWI and soil moisture in comparison to GA hillslope. This results in a higher rate of change in soil temperature of GA hillslope than the AgF hillslope. After analyzing 40 rainfall events, it was concluded that a temperature drop of more than 2<sup>o</sup>C was recorded when the average rainfall intensity and event duration exceeds 7.5mm/hr and 7.5hr, respectively. The understanding of covariance of these hydrological fluxes will be used in the future to develop a hillslope-scale conceptual model.</p>


2013 ◽  
Vol 27 (3) ◽  
pp. 299-304 ◽  
Author(s):  
M. Nosalewicz ◽  
Z. Stępniewska ◽  
A. Nosalewicz

Abstract Flooded organic soils are potentially important sources of greenhouse gases. The effect of soil temperature and moisture on the concentration of N2O and CO2 at two depths of organic soil flooded with two doses of purified wastewater was studied. Nitrous oxide concentrations at the 10-30 cm depth range were generally increased with an increase in soil moisture, showing dependence on the aeration status of soil. The maximum values of N2O concentrations were higher at the 50-100 than 10-30 cm depth range, but a similar pattern of increasing maximum values of N2O concentration with an increasing input of nitrogen in treatments at both depth ranges was observed. The maximum concentrations of carbon dioxide within the 50-100 cm depth range remained at a similar level in all treatments reaching 7.1-7.7%, which indicated weak relations with the input of water and nitrogen at this depth range. We conclude that the N2O and CO2 concentrations at 10-30 cm depths in the examined organic soil flooded with 600mm year-1 of purified wastewater exhibited a similar level as the concentrations in soil watered only by precipitation.


2020 ◽  
Vol Special Issue (1) ◽  
Author(s):  
Manjeet Prem ◽  
Prem Ranjan ◽  
Neeraj Seth ◽  
Ghanshyam T. Patle

The necessity to increase the production of food grains and enhances the quality of surrounding environment has leaded to find the materials to control or regulate the water and wind erosion. Mulching has become now a days an essential and decisive exercise in agricultural production. It lessens the application of herbicides and various chemical fertilizers, control the weeds and maintains the soil moisture and soil temperature. This article consists of the detail reviews of different research conducted on mulches and elaborate the opportunities that they resolving the problem in agriculture. The resources of water for agricultural operations have been inadequate over the years as a result of global warming and uneven or uncertain rainfall in the low rainfall zones of India. To alleviate the water scarcity in agriculture, mulching has a vital impact as a water conserving technique in rain-fed cropping. It is very important primarily for preserving the soil moisture, preventing evaporation of soil and governing the soil temperature, which affects the food production. India being an agricultural country should have a better admiration towards water conservation tactics. By now we are fighting from a great stress of water insufficiency. Each and every drop of water is important for us but inappropriately because of inattentiveness, we repeatedly waste gigantic volume of water in which 70 to 80 % is passed down for irrigation purpose. Mulching and micro- irrigation techniques can play a vital role in controlling the over and excessive irrigation. This practice assistance to prevent weed growth, increment soil moisture, reduce soil erosion, maintain soil temperature, augments soil structure, improves soil fertility and improvise soil biological regime. There are several categories of mulching which are organic mulching, inorganic mulching, natural mulching, synthetic mulching, surface mulching, upright mulching or vertical mulching, plastic mulching, rubber mulching, pebble or stone mulching, dust mulching, straw mulching, landscape fabric, live vegetative barriers etc. Mulching also shows some limitations beyond many advantages as it may harbor some insects, pests and diseases and also create some weed problems sometimes. The current analysis deals with argument of every single feature of mulching and it’s beneficiary effects.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453a-453
Author(s):  
Liqin Wang ◽  
David M. Eissenstat ◽  
Dora E. Flores-Alva

Root respiration is very important to root efficiency, root lifespan, and carbon cycling in plant ecosystems. Yet, the effects of soil temperature and moisture on root respiration are poorly understood, especially under field conditions. In this study, we manipulated soil temperature and moisture by six bearing `Red Chief' Delicious/M26 trees near State College, Pa. Soil temperature was elevated 5 °C at 5-cm depth using circulating hot water and stainless steel grids. Soil temperature was monitored using thermocouples and a data logger, and soil moisture was monitored using TDR. Root–soil respiration was determined by static trapping at the soil surface. Heating was conducted from 8 May to 28 Oct. Drought was initiated on 21 Aug. and lasted 2 months. Root–soil respiration was lowest in spring and increased from June to late August. After September, respiration decreased until the experiment ended in November. Root-soil respiration was not correlated with root length density. Heating enhanced root–soil respiration about 15% to 20% in spring (May) and 10% in summer (June–August). After the drought treatment began, heating increased root-soil respiration about 42% in wet soil, but did not influence respiration in dry soil. Heating accentuated the effect of the drought treatment on soil moisture. After 2 months of no irrigation and no rain, soil moisture was reduced 5% in unheated soil and 10% in heated soil. Drought slowed root–soil respiration 17% in unheated soil and 36% in heated soil, mainly because heating increased respiration in wet soil, but compared to the unheated treatment, had no effect in dry soil.


Sign in / Sign up

Export Citation Format

Share Document