Experiments on Mulching Sisal with Black Polythene in Tanganyika

1968 ◽  
Vol 4 (2) ◽  
pp. 143-150 ◽  
Author(s):  
D. Hopkinson

SummaryExperiments in bulbil nurseries and field sisal were carried out in N.E. Tanganyika, 5°S, 39°E, 200 m. above sea level, at a mean annual rainfall of 1160 mm., on deep red loam. The discussion covers the establishment of sisal through a polythene mulch, the control of weed growth, the persistence of polythene of different thicknesses and from different sources, and some effects on growth of the sisal and on soil properties. A mulch of black polythene improved the growth of bulbil nurseries by 30 per cent or more, due to conservation of soil moisture and elimination of weed competition and disturbance associated with the removal of weeds by hoeing. For nurseries 150-gauge material was preferred, but there were important differences in the persistence of material purchased from two sources. Where black polythene is used in a nursery the density can be increased from 80,000 to 110,000 plants per hectare, to help offset the high cost of the material. A mulch of 250-g. black polythene controlled weeds in field sisal but did not improve growth.

2021 ◽  
Vol 39 (3) ◽  
pp. 115-122
Author(s):  
Zachary Singh ◽  
Adam Maggard ◽  
Rebecca Barlow ◽  
John Kush

Abstract Longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm.) are two southern pine species that are popular for producing pine straw for landscaping. The objective of this research was to determine the response of soil properties and weed growth to the application of pine straw. Longleaf pine, slash pine, and two non-mulched controls (with and without chemical weed control) were tested. Volumetric soil water content, soil nutrients, soil temperature, weed biomass, and seedling growth were measured. Compared to non-mulched controls, both longleaf and slash pine plots had a greater soil moisture during extended periods without rainfall in the full sun environment. When soil temperatures increased, mulched plots had lower soil temperature relative to non-mulched plots. Soil pH and soil nutrients were generally similar between pine straw types with few significant differences in measured variables. Both pine straw treatments reduced weed growth and longleaf pine maintained a greater straw depth over the study period compared to slash pine, but no differences were observed for decomposition. These results indicate that longleaf pine straw and slash pine straw perform equally as well in terms of increasing soil moisture, moderating soil temperature, and reducing weed growth compared to not using mulch. Index words: Pinus elliottii, Pinus palustris, organic mulch, soil properties, landscaping. Species used in this study: Shumard oak, Quercus shumardii Buckl., Eastern redbud, Cercis canadensis L.


Author(s):  
Bhawna Kaushal ◽  
D. D. Sharma ◽  
M. A. Kuchay

The present study entitled "Effect of mulches on soil properties, leaf nutrient status and weed growth of pomegranate under rainfed conditions" at the experimental farm of HR&TS and KVK Kandaghat at Jadari, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, during 2017-2018. The different mulches like Nylon mulch mat, Silver polyethylene mulch, Black polyethylene mulch, Red polyethylene mulch and Coir mulch mat, Grass mulch were used in this investigation. Results revealed that maximum soil temperature and moisture were recorded in black polyethylene mulch. Nylon mulch mat was found effective in controlling weed growth followed by silver polyethylene mulch and black polyethylene mulch. Soil and leaf nutrient content were significantly higher found under grass mulch. The soil hydrothermal regimes were significantly higher under black polyethylene mulch. This provides better prevention of soil water evaporation and retaining soil moisture under rainfed conditions.


2012 ◽  
Vol 22 (3) ◽  
pp. 353-361
Author(s):  
Adam O. Maggard ◽  
Rodney E. Will ◽  
Thomas C. Hennessey ◽  
Craig R. McKinley ◽  
Janet C. Cole

The objective of this research was to determine the response of soil properties and plant growth to the application of various tree-based mulches and provide information specifically regarding attributes of eastern redcedar mulch (Juniperus virginiana). Eastern redcedar mulch, cypress mulch (Taxodium distichum), pine bark nuggets [southern yellow pine (Pinus sp.)], pine mulch (southern yellow pine), hardwood mulch [maple (Acer sp.), oak (Quercus sp.)], red-dyed mulch [maple, poplar (Populus sp.)], and grand eucalyptus mulch (Eucalyptus grandis), as well as two nonmulched controls (with and without chemical weed control) were tested. Volumetric soil moisture, soil nutrients, soil temperature, weed growth, and growth and survival of planted annuals and trees were measured. Compared with nonmulched controls, mulch treatments generally increased growth of annuals and trees and decreased weed growth, but few differences in measured variables were noted among mulch types. Mulched plots had greater volumetric soil moisture than nonmulched plots during extended periods without rainfall. Mulched plots had more moderate diurnal soil temperatures than nonmulched control plots. Soil pH and soil potassium increased with hardwood mulch during the 2 years of the study. These results indicate tree-based mulch benefits plant growth and survival by maintaining greater soil moisture, decreasing competition from weeds, and moderating soil temperatures compared with not using mulch. Eastern redcedar mulch provides similar benefits as other common wood mulches and is a viable forest product.


2016 ◽  
Vol 12 (7) ◽  
pp. 1583-1590 ◽  
Author(s):  
Yuhui Liu ◽  
Chaoyong Hu

Abstract. The 8.2 ka BP event could provide important information for predicting abrupt climate change in the future. Although published records show that the East Asian monsoon area responded to the 8.2 ka BP event, there is no high-resolution quantitative reconstructed climate record in this area. In this study, a reconstructed 10-year moving average annual rainfall record in southwest China during the 8.2 ka BP event is presented by comparing two high-resolution stalagmite δ18O records from Dongge cave and Heshang cave. This decade-scale rainfall reconstruction is based on a central-scale model and is confirmed by inter-annual monitoring records, which show a significant positive correlation between the regional mean annual rainfall and the drip water annual average δ18O difference from two caves along the same monsoon moisture transport pathway from May 2011 to April 2014. Similar trends between the reconstructed rainfall and the stalagmite Mg ∕ Ca record, another proxy of rainfall, during the 8.2 ka BP period further increase the confidence of the quantification of the rainfall record. The reconstructed record shows that the mean annual rainfall in southwest China during the central 8.2 ka BP event is less than that of present (1950–1990) by  ∼  200 mm and decreased by  ∼  350 mm in  ∼  70 years experiencing an extreme drying period lasting for  ∼  50 years. Comparison of the reconstructed rainfall record in southwest China with Greenland ice core δ18O and δ15N records suggests that the reduced rainfall in southwest China during the 8.2 ka BP period was coupled with Greenland cooling with a possible response rate of 110 ± 30 mm °C−1.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2012 ◽  
Vol 29 (7) ◽  
pp. 933-943 ◽  
Author(s):  
Weinan Pan ◽  
R. P. Boyles ◽  
J. G. White ◽  
J. L. Heitman

Abstract Soil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties suggests very different behavior among sites with respect to soil moisture. A principal component analysis indicated parameter groupings associated primarily with soil texture, bulk density, and air-dried water content accounted for 80% of the total variance in the dataset. These results suggested that a few specific soil properties could be measured to provide an understanding of differences in sites with respect to major soil properties. The authors also illustrate how the measured soil properties have been used to develop new soil moisture products and data screening for the North Carolina ECONet. The methods, analysis, and results presented here have applications to North Carolina and for other regions with heterogeneous soils where soil moisture monitoring is valuable.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241794
Author(s):  
Maroua Jerbi ◽  
Sonia Labidi ◽  
Anissa Lounès-Hadj Sahraoui ◽  
Hatem Chaar ◽  
Faysal Ben Jeddi

Whereas the role of arbuscular mycorrhizal fungi (AMF) in plant growth improvement has been well described in agroecosystems, little is known about the effect of environmental factors on AMF root colonization status of barley, the fourth most important cereal crop all over the world. In order to understand the influence of environmental factors, such as climatic and soil physico-chemical properties, on the spontaneous mycorrhizal ability of barley (Hordeum vulgare L.), a field investigation was conducted in 31 different sites in sub-humid, upper and middle semi-arid areas of Northern Tunisia. Mycorrhizal root colonization of H. vulgare varied considerably among sites. Principal component analysis showed that barley mycorrhization is influenced by both climatic and edaphic factors. A partial least square structural equation modelling (PLS-SEM) revealed that 39% (R²) of the total variation in AMF mycorrhizal rate of barley roots was mainly explained by chemical soil properties and climatic characteristics. Whereas barley root mycorrhizal rates were inversely correlated with soil organic nitrogen (ON), available phosphorus amounts (P), altitude (Z), average annual rainfall (AAR), they were directly correlated with soil pH and temperature. Our results indicated that AMF root colonization of barley was strongly related to climatic characteristics than chemical soil properties. The current study highlights the importance of the PLS-SEM to understand the interactions between climate, soil properties and AMF symbiosis of barley in field conditions.


1969 ◽  
Vol 93 (3-4) ◽  
pp. 149-171
Author(s):  
Jorge L. Lugo-Camacho ◽  
Miguel A. Muñoz ◽  
Juan Pérez-Bolívar ◽  
Gregory R. Brannon

Soil temperature measurements from a climate monitoring network in Puerto Rico were evaluated and the difference between mean summer and mean winter soil temperature, known as isotivity value, was calculated. Air and soil temperature was collected from five weather stations of the USDA-Natural Resources Conservation Service from sea level to 1,019 m above sea level and from different soil moisture regimes. Isotivity values ranged from 1.2 to 3.9° C with an average of 2.6° C. The 750-m elevation was identified as the limit between the isohyperthermic and isothermic soil temperature regimes in the perudic soil moisture regime in Puerto Rico. The greatest differences between mean annual soil temperature and mean annual air temperature were observed at Guánica, Combate and Guilarte (2.1 ° C) stations. The smallest differences were observed at Maricao (0.8° C) and Isabela (1.8° C) stations. The study also indicated that the mean annual soil temperature in Puerto Rico can be estimated by adding 1.8° C to the mean annual air temperature or by the equation y = -0.007x + 28.0° C. The equation indicates that 97 percent of the time the behavior of the mean annual soil temperature is a function of elevation. According to the updated soil temperature regime boundaries, eight soil series were established in the Soil Survey of San Germán Area. In an area under the isothermic soil temperature regime, four soil series were classified as Oxisols (Haploperox), two soil series as Inceptisols (Eutrudepts) and two soil series as Mollisols (Argiudolls). This is the first field recognition of the Haploperox soil great group in the United States and its territories.


2008 ◽  
Vol 5 (5) ◽  
pp. 4071-4105 ◽  
Author(s):  
L. Merbold ◽  
J. Ardö ◽  
A. Arneth ◽  
R. J. Scholes ◽  
Y. Nouvellon ◽  
...  

Abstract. This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan) to 1150 mm (The Republic of Congo) and include a spectrum of vegetation types (or land cover) (open savannas, woodlands, croplands and grasslands). Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments. Values for maximum net carbon assimilation rates (photosynthesis) ranged from 12 μmol CO2 m−2 s−1 in a dry, open Acacia savanna (C3-plants) up to 40 μmol CO2 m−2 s−1 for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (R2=0.89). Maximum photosynthetic uptake rates were positively related to satellite-derived fAPAR. Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems, except the Congolese grassland, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.


Sign in / Sign up

Export Citation Format

Share Document