scholarly journals Correlation between the Soil Moisture Reading Obtained with Soil Moisture Sensors and Gravimetric Method for Scheduling of Irrigation in Maize

Author(s):  
C. Durga ◽  
V. Ramulu ◽  
M. Umadevi ◽  
K. Suresh ◽  
E. Sathyanarayana

A field experiment was conducted at Water Technology Centre farm (WTC), College of Agriculture, Rajendranagar, Hyderabad for studying the correlation between the soil moisture reading obtained with soil moisture sensors and gravimetric method. The experiment was designed in split plot with two main treatments comprising of surface furrow (M1) and drip irrigation (M2) methods and six irrigation schedules were assigned to sub treatments and replicated thrice. Significantly higher grain yield (7.05 t ha-1) of maize was observed with nano sensor (IITB) based irrigation scheduling over rest of the irrigation schedules except gypsum block. The results revealed that correlation between the tensiometer readings and gravimetric moisture content showed a negative non significant correlation before irrigation in surface furrow irrigation method and negative significant correlation for drip irrigation method. But in case of after irrigation a positive non significant correlation was observed in both drip and surface furrow irrigation methods. The gypsum block reading and gravimetric moisture content studies showed a negative significant correlation before irrigation in both surface furrow and drip irrigation methods, where as a positive non significant correlation between gypsum block readings and gravimetric moisture content readings were noticed after irrigation in both drip and surface furrow irrigation methods. Similar trend was recorded in nano sensor, except that it showed a positive significant correlation in both irrigation methods before irrigation. The correlation studies between the profile probe readings and gravimetric moisture content showed a negative significant correlation in surface furrow irrigation method at before and after irrigation, whereas, a positive significant correlation was observed after irrigation in drip irrigation method.

2016 ◽  
Vol 31 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Sharad J. Kadbhane ◽  
Vivek L. Manekar

AbstractIn this study, field experiment has been carried out on the grape yard during the summer, Rainy, and winter seasons using different irrigation methods and measuring its impact on moisture retention. Six different irrigation methods such as drip irrigation (DI), drip irrigation with plastic mulching (DIPM), drip irrigation with organic mulching (DIOM), subsurface irrigation with stone column (SISC), subsurface irrigation with mud pot (SIMP), and subsurface irrigation with plastic bottles (SIPB) are used during experimental work. CROPWAT-8.0 model (FAO) is used to find out crop water requirements. Soil moisture is measured using soil moisture sensors fixed in the depth of 30 and 60 cm at the same location. Climatic parameters are obtained from the automatic weather station which is located near the experimental field. Multifactorial statistical analysis has been carried out using recorded soil moisture and climatic data. As per experimental results and analysis, it is observed that drip irrigation with the plastic mulching method is found to be the best method of irrigation for soil moisture retention among all other methods due to its highest soil moisture retention value as 25–30%. Whereas subsurface irrigation with the plastic bottle method is found to be suitable as it retained 15–20% soil moisture and material used in this irrigation method is waste material and the cheapest one.


1998 ◽  
Vol 88 (3) ◽  
pp. 252-259 ◽  
Author(s):  
A. A. Bell ◽  
L. Liu ◽  
B. Reidy ◽  
R. M. Davis ◽  
K. V. Subbarao

Subsurface drip irrigation and associated mandatory minimum tillage practices significantly reduced the incidence of lettuce drop (Sclerotinia minor) and the severity of corky root on lettuce compared with furrow irrigation and conventional tillage. Three possible mechanisms for the drip irrigation-mediated disease suppression were examined in this study: qualitative and quantitative differences in the soil microflora under furrow and subsurface drip irrigation; their antagonism and potential bio-control effects on S. minor; and the physical distribution of soil moisture and temperature relative to the two irrigation methods. To determine if the suppressive effects under subsurface drip irrigation were related to changes in soil microflora, soils were assayed for actinomycetes, bacteria, and fungi during the spring and fall seasons. The effects of the irrigation methods on microbial populations were nearly identical during both seasons. In the spring season, the total number of fungal colonies recovered on potato dextrose agar amended with rose Bengal generally was greater in soils under drip irrigation than under furrow irrigation, but no such differences were observed during the fall. Numbers of actinomycetes and bacteria were not significantly different between irrigation methods during either season. No interaction between sampling time and irrigation methods was observed for any of the microbial populations during both seasons. Thus, the significant effect of sampling time observed for actinomycete and bacterial populations during the spring was most likely not caused by the irrigation treatments. There were also no qualitative differences in the three groups of soil microflora between the irrigation treatments. Even though some fungal, actinomycete, and bacterial isolates suppressed mycelial growth of S. minor in in vitro assays, the isolates came from both subsurface drip- and furrow-irrigated soils. In in planta assays, selected isolates failed to reduce the incidence of drop in lettuce plants. The soil moisture under subsurface drip irrigation was significantly lower at all depths and distances from the bed center after an irrigation event than under furrow irrigation. The soil temperature, in contrast, was significantly higher at both 5 and 15 cm depths under drip irrigation than under furrow irrigation. The suppression of lettuce drop under subsurface drip irrigation compared with furrow irrigation is attributed to differential moisture and temperature effects rather than to changes in the soil microflora or their inhibitory effects on S. minor.


2018 ◽  
Vol 64 (2) ◽  
pp. 57-64
Author(s):  
Ibrahim Mubarak ◽  
Mussaddak Janat ◽  
Mohsen Makhlouf

Abstract Due to water scarcity and dry Mediterranean conditions, improving water use efficiency is a major challenge for sustainable crop production and environment protection. Field experiments were conducted for two consecutive years (2010 and 2011) to assess the effects of variety and irrigation method on potato crop, following a 2 × 4 factorial experiment type arranged in a split plot design with two spring potato varieties (Spunta and Marfona), and four irrigation methods (drip irrigation with two modes of dripper spacing/dripper flow: 30 cm at 4 l/h and 60 cm at 8 l/h, sprinkle irrigation, and furrow irrigation), with three replicates. Potato was irrigated when soil moisture in the active root depth was within the range of 75-80% of field capacity as determined by the neutron probe technique. Results did not show any differences between both varieties. Moreover, no differences in marketable yield, total dry matter, and harvest index were found between irrigation methods. However, results showed that sprinkle irrigation significantly enhanced nitrogen use efficiency. Furthermore, both water productivity and irrigation water use efficiency were significantly increased under drip irrigation compared with the other irrigation methods. They were about twice those under furrow irrigation, indicating that the employment of drip irrigation method can effectively address water shortage and sustainable potato production, in the dry Mediterranean region.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5387
Author(s):  
Abdelaziz M. Okasha ◽  
Hasnaa G. Ibrahim ◽  
Adel H. Elmetwalli ◽  
Khaled Mohamed Khedher ◽  
Zaher Mundher Yaseen ◽  
...  

Precise and quick estimates of soil moisture content for the purpose of irrigation scheduling are fundamentally important. They can be accomplished through the continuous monitoring of moisture content in the root zone area, which can be accomplished through automatic soil moisture sensors. Commercial soil moisture sensors are still expensive to be used by famers, particularly in developing countries, such as Egypt. This research aimed to design and calibrate a locally manufactured low-cost soil moisture sensor attached to a smart monitoring unit operated by Solar Photo Voltaic Cells (SPVC). The designed sensor was evaluated on clay textured soils in both lab and controlled greenhouse environments. The calibration results demonstrated a strong correlation between sensor readings and soil volumetric water content (θV). Higher soil moisture content was associated with decreased sensor output voltage with an average determination coefficient (R2) of 0.967 and a root-mean-square error (RMSE) of 0.014. A sensor-to-sensor variability test was performed yielding a 0.045 coefficient of variation. The results obtained from the real conditions demonstrated that the monitoring system for real-time sensing of soil moisture and environmental conditions inside the greenhouse could be a robust, accurate, and cost-effective tool for irrigation management.


2020 ◽  
Vol 228 ◽  
pp. 105880 ◽  
Author(s):  
Jesús María Domínguez-Niño ◽  
Jordi Oliver-Manera ◽  
Joan Girona ◽  
Jaume Casadesús

2019 ◽  
Vol 62 (2) ◽  
pp. 363-370
Author(s):  
Ruixiu Sui ◽  
Horace C. Pringle ◽  
Edward M. Barnes

Abstract. One of the methods for irrigation scheduling is to use sensors to measure the soil moisture level in the plant root zone and apply water if there is a water shortage for the plants. The measurement accuracy and reliability of the soil moisture sensors are critical for sensor-based irrigation management. This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, the MPS-2 and 200SS soil water potential (SWP) sensors, and the 200TS soil temperature sensor. Six 183 cm × 183 cm × 71 cm wooden compartments were built inside a greenhouse, and each compartment was filled with one type of soil from the Mississippi Delta. A total of 66 sensors with 18 data loggers were installed in the soil compartments to measure SVWC, SWP, and soil temperature. Soil samples were periodically collected from the compartments to determine SVWC using the gravimetric method. SVWC measured by the sensors was compared with that determined by the gravimetric method. The SVWC readings from the sensors had a linear regression relationship with the gravimetric SVWC (r2 = 0.82). This relationship was used to calibrate the sensor readings. The SVWC and SWP sensors could detect the general trend of soil moisture changes. However, their measurements varied significantly among the sensors. To obtain accurate absolute soil moisture measurements, the sensors require individual and soil-specific calibration. The 5TM, MPS-2, and 200TS sensors performed well in soil temperature measurement tests. Individual temperature readings from these sensors were very close to the mean of all sensor readings. Keywords: Irrigation, Sensors, Soil types, Soil water content, Soil water potential.


2018 ◽  
Vol 34 (6) ◽  
pp. 963-971 ◽  
Author(s):  
Tonny José Araújo da Silva ◽  
Edna Maria Bonfim-Silva ◽  
Adriano Bicioni Pacheco ◽  
Thiago Franco Duarte ◽  
Helon Hébano de Freitas Sousa ◽  
...  

Abstract.Accurate measurements of soil moisture content can contribute to resource conservation in irrigated systems. The objective of this study was to evaluate various soil moisture sensors (a porous cup tensiometer, Diviner 2000, PR2, XH300, PM100, and ML3; the mention of model names does not constitute an implied endorsement) used in four different soil types. The experiment was conducted inside a greenhouse using a specially constructed box that contained the soil samples. The soil samples were first saturated and subsequently drained before starting the measurements. The soil moisture content was determined by the oven-drying method. Using the standard deviation of the sensor readings, regression analyses were performed, resulting in calibration equations and coefficient of determination (R2) values for each sensor and soil type combination. The porous cup tensiometer, Diviner 2000, PR2, and ML3 measurements resulted in excellent R2 values that exceeded 0.95 for the four soils. However, measurements with the XH300 and PM100 sensors resulted in R2 values of 0.37 to 0.86 and 0.61 to 0.94, respectively, limiting their scientific applicability for the studied soils. Therefore, the porous cup tensiometer, Diviner 2000, PR2, and ML3 estimated the soil moisture content with greater confidence than did the other sensors and with an error of less than 5%. Keywords: Calibration, Tensiometer, Volumetric water content.


Author(s):  
A. P. Shatkovskyi ◽  
F. A. Minza

A great part of the territory of Ukraine is located in the zones of insufficient and unstable moistening. In such conditions successful agricultural activity is possible only when applying irrigation. Official statistics indicates an essential lack of irrigation systems in the Ukraine's horticulture. The irrigated lands in Ukraine under fruit-bearing plantations of fruit-bearing age make up only 16,2 thousand hectares or 13 % of their total area. As a result, farms and agricultural enterprises do not use their productive capacity in full effect in fruit production therefore they lose a lot of profits. Applying drip irrigation provides an increase in yields 4-5 times as much or even more. Its use for long-term plantations makes it possible to create super-intensive orchards with a yield of 50 and more tons per hectare providing high consumer quality products. Obtaining the maximum effect from irrigation to a large extent depends on the correctness of irrigation scheduling. The purpose of the study was to determine the optimal method for setting proper irrigation scheduling to ensure a suitable regime of drip irrigation and water consumption of apple varieties as in the case of Renet Symyrenko variety on the rootstock M-9. Methods of research: 5 plots of apple orchard were allocated and for each of them a separate method of irrigation scheduling was chosen, namely: 1) 1st – when using an automatic soil moisture station iMetos ECO D2 (sensors of the Echo Probe type); 2) 2d – when using tensiometers; 3) 3d – when using Penman-Monteith calculation method (iMetos weather station 1, computer program CROPWAT 8.0); 4) 4th – when using the visual method; 5) 5th - without irrigation (reference area). Based on the study results the necessity of using the automatic internet station for soil moisture iMetos ECO D2 when applying drip irrigation and establishing water consumption of apple plantations has been substantiated. The irrigation rate, the total water consumption and the water consumption coefficient were calculated using different methods of irrigation scheduling. The method that enables to significantly save irrigation water and electric power as well as to prevent unreasonable expenses has been established. It was experimentally proved that the optimal variant to meet plant water consumption requirements and perform a duly irrigation scheduling is the method when using the automatic internet station of soil moisture iMetos ECO D2. So for setting up a proper drip irrigation scheduling it is recommended to use iMetos Internet Station as the least labor-intensive and cost-effective equipment to provide efficient cultivation of orchard plantations.


Sign in / Sign up

Export Citation Format

Share Document