scholarly journals Biochemical Analysis Based on Zinc Uptake of Chickpea (Cicer arietinum L.) Varieties Infected by Meloidogyne incognita

Author(s):  
Pranaya Pradhan ◽  
Dhirendra Kumar Nayak ◽  
Manaswini Mahapatra

The significant constraints in Chickpea (Cicer arietinum L.) production hampers a bit more than 14% global yield loss due to plant-parasitic nematodes. Root-knot nematode (Meloidogyne sp.) is an endoparasite and a significant species affecting the chickpea plant. So, the chemical basis of management is more cost-effective, and pest resurgence building is enhanced in the pathogen. So, ecological-based nematode management is requisite, which also is got hampered due to breeding for resistance against such plant-parasitic nematodes. This was the primary reason to conduct this experiment to enhance resistance in the chickpea plants based on Zinc uptake by using bioagent, Pseudomonas fluorescens alone or in combination. where Different treatments including nematode, bacterium, and chemicals were used sustaining the enhancement of disease resistance in chickpea cultivars, RSG 974, GG 5, GNG 2144. Zinc content of chickpea variety GNG 2144 was found the highest in treatment, when only bacterium (P. fluorescens) was inoculated, i.e., 3.14 mg/100g of root followed by GG 5, i.e., 2.79 mg/100g of root and RSG 974 was, i.e., 2.35 mg/100g of root respectively in a descending order. Application of P. fluorescence combined or alone gradually increased the Zn concentration in roots of chickpea plants compared to healthy check followed by chemical treated plants.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Olaf Kranse ◽  
Helen Beasley ◽  
Sally Adams ◽  
Andre Pires-daSilva ◽  
Christopher Bell ◽  
...  

Abstract Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


2007 ◽  
Vol 47 (5) ◽  
pp. 620 ◽  
Author(s):  
B. L. Blair ◽  
G. R. Stirling

Damage to sugarcane caused by root-knot nematode (Meloidogyne spp.) is well documented in infertile coarse-textured soils, but crop losses have never been assessed in the fine-textured soils on which more than 95% of Australia’s sugarcane is grown. The impact of nematodes in these more fertile soils was assessed by repeatedly applying nematicides (aldicarb and fenamiphos) to plant and ratoon crops in 16 fields, and measuring their effects on nematode populations, sugarcane growth and yield. In untreated plant crops, mid-season population densities of lesion nematode (Pratylenchus zeae), root-knot nematode (M. javanica), stunt nematode (Tylenchorhynchus annulatus), spiral nematode (Helicotylenchus dihystera) and stubby-root nematode (Paratrichodorus minor) averaged 1065, 214, 535, 217 and 103 nematodes/200 mL soil, respectively. Lower mean nematode population densities were recorded in the first ratoon, particularly for root-knot nematode. Nematicides reduced populations of lesion nematode by 66–99% in both plant and ratoon crops, but control of root-knot nematode was inconsistent, particularly in ratoons. Nematicide treatment had a greater impact on shoot and stalk length than on shoot and stalk number. The entire community of pest nematodes appeared to be contributing to lost productivity, but stalk length and final yield responses correlated most consistently with the number of lesion nematodes controlled. Fine roots in nematicide-treated plots were healthier and more numerous than in untreated plots, and this was indicative of the reduced impact of lesion nematode. Yield responses averaged 15.3% in plant crops and 11.6% in ratoons, indicating that nematodes are subtle but significant pests of sugarcane in fine-textured soils. On the basis of these results, plant-parasitic nematodes are conservatively estimated to cost the Australian sugar industry about AU$82 million/annum.


EDIS ◽  
2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Mary Ann D. Maquilan ◽  
Ali Sarkhosh ◽  
Donald W. Dickson

One of the production issues that peach growers in Florida must contend with is plant-parasitic nematodes. One such species is the more recently discovered peach root-knot nematode, Meloidogyne floridensis, which is the subject of this 5-page publication. Written by Mary Ann D. Maquilan, Ali Sarkhosh, and Donald Dickson and published by the UF/IFAS Horticultural Sciences Department, July 2018. http://edis.ifas.ufl.edu/hs1320


1993 ◽  
Vol 33 (2) ◽  
pp. 197 ◽  
Author(s):  
GR Stirling ◽  
A Nikulin

Twelve pineapple fields with various densities of root-knot nematode were selected during a ratoon crop. Nematode populations were monitored regularly after the crop was ploughed out. Regardless of the original population density, rootknot nematodes were almost nondetectable at the end of the subsequent 3-6-month fallow intercycle period. In the absence of nematicide treatment there were marked differences between sites in the manner in which rootknot nematodes increased in the newly planted crop. At some sites, they were detectable 9-15 months after planting, whereas at other sites, nematodes were not observed at 15 months. Increases in ratoon crop yield following application of ethylene dibromide or fenamiphos were related to root-knot nematode population density. Significant increases in yield were not obtained at sites where the nematode was not detectable at 15 months. The results suggest that some pineapple growers are needlessly applying nematicides and that nematode diagnostic services should be developed to provide growers with advice on their nematode management programs.


1989 ◽  
Vol 29 (1) ◽  
pp. 129 ◽  
Author(s):  
M Edwards

Three grapevine rootstock trials in North-East Victoria, Australia, were sampled over several summers to determine nematode populations and the resistance or the tolerance of some commonly used winegrape varieties and rootstocks to plant parasitic nematodes. Rootstocks on which nematodes failed to reproduce or reproduced poorly were considered resistant, rootstocks which supported high populations of nematodes with no apparent effect on yield were considered tolerant. Susceptible rootstocks supported high numbers of nematodes and yielded poorly. The varieties studied were: Shiraz, Chardonnay, Cabernet Sauvignon; and the rootstocks were: Harmony, Richter 110, Schwarzmann, ARG No. 1, 5A Teleki, Rupestris du Lot, 5BB Kober, SO4, Ramsey, K5 1-32 and 1202. The plant parasitic nematodes found on the trial sites were root-knot (Meloidogyne javanica (Treub) Chitwood) and citrus (Tylenchulus semipenetrans Cobb) nematodes. Cabernet Sauvignon, Chardonnay, Shiraz and ARG No. 1 were susceptible to the root-knot nematode. Harmony exhibited tolerance to the citrus nematode and was a good host, allowing a large population to build up. Ramsey appeared to be resistant to the citrus nematode, at least in the Cabernet Sauvignon rootstock trial at Wahgunyah.


Nematology ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 9-18
Author(s):  
Johannes Hallmann ◽  
Björn Niere

Laboratories working with regulated plant-parasitic nematodes need to ensure that those nematodes are contained within the quarantine facility. Solid or liquid waste produced during the nematode extraction process has to be deposited in such a way that there is no risk of nematodes spreading. Autoclaving works well for solid waste but uses substantial amounts of energy and thus is often considered too expensive for the enormous amount of wastewater accumulating during nematode extraction. Therefore, there is considerable interest in using less energy-consuming alternatives, such as sedimentation basins. However, published information on the efficacy of sedimentation basins in retaining plant-parasitic nematodes is almost non-existent. In this study, the efficacy of a three-step sedimentation system under routine and artificially nematode-enriched conditions was investigated. Under all experimental conditions, nematode cysts or part of cysts were never found to escape the sedimentation system. This also accounts for plant-parasitic nematodes (eggs and vermiform stages) during routine operation. However, under artificially nematode-enriched conditions (supply of up to several million nematodes) and maximum water flow rates, single specimens of plant-parasitic nematodes were detected in the effluent of the last sedimentation basin that feeds into the closed municipal sewage system. Although wastewater treatment was not investigated in this study, the combination of a system of sedimentation basins plus subsequent wastewater treatment in sewage plants is considered a cost-effective method to contain plant-parasitic nematodes during routine operation.


2019 ◽  
Vol 18 (4) ◽  
pp. 62-69
Author(s):  
Phong V. Nguyen

Effectors have been identified to play a very important role in the parasitism of plant-parasitic nematode. To cope with this type of pathogen, many approaches of silencing genes encoding for effectors have been studied and promise to be an effective tool to create plant varieties resistant to plant-parasitic nematodes. In this study, the Minc16281 gene encoding a pioneer effector with unknown function was determined and cloned from a Meloidogyne incognita population isolated from soybean field (ID: MH315945.1). The nucleotide sequence of this gene showed 97% identity to its homolog in GenBank (ID: JK287445.1) used as the control strain in our research. To generate host-induced gene silencing constructs which can potentially silence the expression of Minc16281 gene, two artificial microRNAs were synthesized based on the miR319a structure of Arabidopsis thaliana and inserted into an expression vector in soybean. These microRNAs can be introduced into soybean to investigate the function of Minc16281 on parasitism of root-knot nematode.


2021 ◽  
Author(s):  
Radwa G. Mostafa ◽  
Aida M. El-Zawahry ◽  
Ashraf E. M. Khalil ◽  
Ameer E. Elfarash ◽  
Ali D. A. Allam

Abstract Background Plant-parasitic nematodes are extremely dangerous pests in a variety of economically important crops. The purpose of this study was a survey of all nematode species existing in banana from three sites in Assiut Governorate, Egypt and to characterize the most common species by morphological, morphometric and molecular techniques (PCR with species-specific primers). Then, study of resistance or sensitivity of some banana cultivars to root-knot nematodes.Methods and Results Four nematodes, Meloidogyne, Rotylenchulus reniformis, Helicotylenchus and Pratylenchus were isolated and identified from soil and root samples collected from banana plants. Most frequently occurring of plant parasitic nematode species in banana was Meloidogyne. Former research found differences in species and in resistance to root-knot nematodes among the examined plant cultivars. Identification of Root-knot nematodes by Characterize of morphometric, molecularly, morphological isolate of Meloidogyne related to banana plants. The results revealed that the identified nematode species, Meloidogyne javanica, is the most common plant-parasitic nematodes in all locations. Data on the susceptibility of the tested banana cultivars to M. javanica revealed that Grand Naine was highly susceptible (HS) however, Magraby was susceptible (S) but Williams and Hindi cultivars were moderately resistant (MR).Conclusions we concluded that a survey revealed the significant prevalence of Meloidogyne javanica, the most important nematodes on banana in Assiut. The morphometric, morphological, and molecular identification were harmonic with one another. In addition to the host response of certain banana cultivars, to M. javanica that resistance is of significance and can be helpful to incorporate through planning control measures for root- knot nematodes.


1970 ◽  
Vol 45 (3) ◽  
pp. 267-270 ◽  
Author(s):  
MM Rahman ◽  
IH Mian

A study was undertaken to isolate and identify different genera of plant parasitic nematodes from soil and plant samples during July to October 2007 in the Laboratory of Plant Pathology at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Altogether 10 (Ten) nematodes belonging to 10 genera were isolated and identified from various soil and plant samples. For identification of plant parasitic nematodes, stylet and other anatomical structures such as Dorsal esophageal Gland Orifice (DGO), Esophageal lumen, Median bulb, Basal bulb, Intestine, Reproductive structures (vagina and its position, specula ) Tail types etc. were used as main criteria. Among 10 (ten) different identified genera of nematodes (Criconemoids sp., Hemicriconemoides sp., Tylenchus sp., Ditylenchus sp., Tylenchorhynchus sp., Hoplolaimus sp., Helicotylenchus sp., Pratylenchus sp., Meloidogyne sp., Radinaphelenchus sp.) maximum nematodes were under the family of Tylenchidae. The abundance numbers of plant parasitic nematodes were found as the Ditylenchus sp.(Ufra nematode) and Meloidogyne sp.(Root knot nematode) which were the serious plant pathogens causing ufra in rice and root knot in different crops respectively, so far recorded in Bangladesh. Key words: Isolation; Identification; Plant parasitic nematodes. DOI: 10.3329/bjsir.v45i3.6536Bangladesh J. Sci. Ind. Res. 45(3), 267-270, 2010


2012 ◽  
Vol 1 (1) ◽  
pp. 81-87
Author(s):  
Ajit K. Ngangbam ◽  
Nongmaithem B. Devi

Plant parasitic nematodes which are highly successful parasites evolved a very specialized feeding relationship with the host plant to cause the destructive root-knot disease. They initiate their parasitic relationship with the host by releasing their secretions into root cells which in turn stimulate the root cells of the host to become specialized feeding cells which are considered as the single source of nutrients essential for the nematode's survival. The parasitism genes expressed in nematode's esophageal gland cells encode secretory proteins that are released through its stylet to direct the interactions of the nematode with its host plants.


Sign in / Sign up

Export Citation Format

Share Document