scholarly journals Evaluation of the Corrosion Inhibitive Properties of Three Different Leave Extracts on Mild Steel Iron in Sulphuric Acid Solution

Author(s):  
Gabriel N. Chukwueze ◽  
Christian O. Asadu ◽  
Chijioke E. Onu ◽  
Innocent S. Ike

The inhibitive ability of pawpaw, neem and curry leaf extracts on corrosion of mild steel in sulfuric acid solution were investigated in this work. The extracts obtained from their respective leaves, were characterized to determine their phytochemical constituents as well as functional groups present using Fourier Transform Infrared Spectroscopy (FTIR) technique. Weight loss techniques was employed to evaluate the corrosion inhibition efficiency of the leaf extracts. The Scanning Electron Microscopy (SEM) was used to study the morphology of the mild steel before and after corrosion experiments. The process factors studied was exposure time, concentration of leaf extracts (inhibitor) and temperature. The results revealed that the phytochemical constituents of the leaves are capable of inhibiting corrosion due to high concentration of tannins which is responsible for the corrosion inhibition of mild steel. The rate of corrosion decreased with increase in the concentration of the extracts while the inhibition efficiency increased with increase in the concentration of the extracts. Scanning Electron Microscopy (SEM) revealed that the corroded mild steel in the presence of the extracts had smoother surfaces than corroded mild steel in the absence of the extracts. Also, neem leaf extract demonstrated higher potential as corrosion inhibitor than pawpaw and curry leaf extracts.

2020 ◽  
Vol 15 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Ahmed Al-Amiery ◽  
Lina M Shaker ◽  
Abdul Amir H Kadhum ◽  
Mohd S Takriff

Abstract 4-Amino-3-(2-bromo-5-methoxyphenyl)-1H-1,2,4-triazole-5(4H)-thione (ATH) was synthesized and characterized by nuclear magnetic resonance and Fourier-transform infrared as spectroscopical techniques and elemental analysis. ATH was studied for corrosion inhibition of mild steel in corrosive environment by means of weight loss technique, scanning electron microscopy and the adsorption isotherm. ATH demonstrates a superior inhibition efficiency against corrosion of mild steel. Adsorption data fit well to a Langmuir isotherm model.


1975 ◽  
Vol 18 (1) ◽  
pp. 113-121
Author(s):  
R.M. Rizki ◽  
T.M. Rizki ◽  
C.A. Andrews

The effects of wheat germ agglutinin on Drosophila embryonic cell lines growing on cover-glasses was examined by scanning electron microscopy. At low concentrations of the lectin (5-10 mug/ml), cells spread against the glass surface and fused to form syncytia. At high concentration, damage to the cell surface was evidenced as extensive membrane shrivelling and loss of surface microfilaments. Fusion also occurred under these conditions. There was some indication that the morphology of cells in division remains undisturbed by wheat germ agglutinin. The coalescence of cells and morphologic disotrtion induced by wheat germ agglutinin were not inhibited by N-acetylglucosamine, the hapten inhibitor of the lectin, under the conditions utilized in this study.


Author(s):  
Lalita Saini ◽  
R. K. Upadhyay

Mass loss and Scanning Electron Microscope method (SEM) have been used to study the corrosion inhibition efficiency on mild steel and aluminium using synthesized inhibitors i.e. N-Benzylidene aniline (CI1) and N-Benzylidene 4-methylaniline (CI2) in Trichloroacetic acid (TCAA). Study reveals that both mild steel and aluminium are prone to corrosion in organic acid like TCAA. Out of these two metals, aluminium is more vigorously corroded by the TCAA in comparison to mild steel in same conditions and synthesized inhibitors CI1 and CI2 are almost same effective for mild steel and aluminium.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
R. Geethanjali ◽  
A. Ali Fathima Sabirneeza ◽  
S. Subhashini

Pectin-g-polyacrylamide (denoted as Pec-g-PAAm) and pectin-g-polyacrylic acid (denoted as Pec-g-PAA) were synthesized using pectin, acrylamide, and acrylic acid as starting materials. The grafted polymers were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyser (TGA), and scanning electron microscopy (SEM). The corrosion inhibition behaviour of the grafted polymers on mild steel in 3.5% NaCl was evaluated electrochemically through Tafel polarization and impedance studies. The corrosion inhibition performance of both the polymers was found to be around 85%.


1976 ◽  
Vol 55 (1) ◽  
pp. 107-110 ◽  
Author(s):  
Abraham Abramovich ◽  
Ricardo L. Macchi ◽  
Lucía M. Ribas

The surface of tooth enamel that had been left in contact with a phosphoric acid solution or a zinc phosphate cement mix was studied by scanning electron microscopy. Both treatments modified enamel surface topography. The modifications were represented by cavities of varying extension and depth.


2006 ◽  
Vol 274 (1606) ◽  
pp. 97-102 ◽  
Author(s):  
M.A Giraldo ◽  
D.G Stavenga

The beads in the wing scales of pierid butterflies play a crucially important role in wing coloration as shown by spectrophotometry and scanning electron microscopy (SEM). The beads contain pterin pigments, which in Pieris rapae absorb predominantly in the ultraviolet (UV). SEM demonstrates that in the European subspecies Pieris rapae rapae , both males and females have dorsal wing scales with a high concentration of beads. In the Japanese subspecies Pieris rapae crucivora , however, only the males have dorsal wing scales studded with beads, and the dorsal scales of females lack beads. Microspectrophotometry of single scales without beads yields reflectance spectra that increase slightly and monotonically with wavelength. With beads, the reflectance is strongly reduced in the UV and enhanced at the longer wavelengths. By stacking several layers of beaded scales, pierid butterflies achieve strong colour contrasts, which are not realized in the dorsal wings of female P. r. crucivora . Consequently, P. r. crucivora exhibits a strong sexual dichroism that is absent in P. r. rapae .


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Saeed Mohammadi ◽  
Fatemeh Baghaei Ravari ◽  
Athareh Dadgarinezhad

An investigation was conducted to improve the corrosion inhibition efficiency of molybdate-based inhibitors for mild steel which is the main construction material of cooling water systems, using nitroethane as an organic compound beside zinc. In this study a new molybdate-based inhibitor was introduced with the composition of 60 ppm molybdate, 20 ppm nitrite, 20 ppm nitroethane, and 10 ppm zinc. Inhibition efficiency of molybdate alone and with nitrite, nitroethane, and zinc on the uniform corrosion of mild steel in stimulated cooling water (SCW) was assessed by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance (AC impedance) measurements. Weight loss measurements were made with coupon testing specimens in the room temperature for 48 h. Studies of electron microscopy, including scanning electron microscopy (SEM) photograph and X-ray energy dispersive spectrometry (EDS) microanalysis, were used. The results obtained from the polarization and AC impedance curves were in agreement with those from the corrosion weight loss results. The results indicate that the new inhibitor is as effective as molybdate alone, though at one-ninth of the concentration range of molybdate, which is economically favorable.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Eko Ariyanto ◽  
Yuyun Niyati ◽  
Dian Kharismadewi ◽  
Robiah Robiah

Wastewater from the fertilizer industry contains a high concentration of PO43- and NH4+. Those ions formed deposits that frequently clogged the conduits and reduced the pump efficiency of the wastewater treatment plant. A high concentration of PO43- and NH4+ in this wastewater can be used as a secondary source of PO43- fertilizer through the recovery process into struvite compounds (MgNH4PO4.6H2O). In this research, Struvite was crystallized in Aeration Cone Column Crystallizer (ACCC) with Magnesium modified natural Zeolite (Zeo-Mg) as adsorbent. Research also has been done using the Batch process, and the results were used as basis variables in the ACCC system. Effects of Zeolite activation, amounts of Zeo-Mg (10 – 30 g), PO43- and NH4+reactant ratio (1:1 – 1:3), pH (6 – 9), and reaction time (0 – 60 minutes) to the removal percentage of PO43- were used as research parameters that analyzed in struvite crystallization process. Zeo-Mg and struvite produced were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Research results in the ACCC system with Zeo-Mg as adsorbent showed that the percentage of PO43- removal was 65% in 16 minutes and followed pseudo-first-order reaction kinetics with a reaction rate constant of 0.21 min-1. The PO43- removal reached equilibrium at pH 8.10 after 28 minutes. Simultaneous removal of PO43- to formed struvite crystals using Zeo-Mg as an adsorbent and without the addition of Mg ions solution in the ACCC system is a novel process in wastewater treatment. Moreover, this PO43- recovery process can be implemented in the industrial scale due to the practical operation.A B S T R A KAir limbah industri pupuk banyak mengandung PO43- dan NH4+. Ion-ion ini membentuk endapan yang seringkali menyumbat aliran pipa yang menyebabkan penurunan efisiensi pompa di instalasi pengolahan air limbah. Kandungan PO43- dan NH4+ berkonsentrasi tinggi ini dapat dijadikan sumber sekunder untuk membuat pupuk PO43- dengan melakukan recovery sebagai senyawa struvite (MgNH4PO4.6H2O). Pada penelitian ini, struvite dibentuk menjadi kristal menggunakan Aeration Cone Column Crystallizer (ACCC) dengan adsorben zeolit alam yang telah dimodifikasi menggunakan ion magnesium (Zeo-Mg). Penelitian juga dilakukan dengan menggunakan proses batch, yang hasilnya dijadikan basis variabel pada sistem ACCC. Pengaruh pengaktifan zeolit, penambahan Zeo-Mg (10–30 g), rasio reaktan PO43- dan NH4+ (1:1–1:3), perubahan pH larutan (6–9), dan lamanya waktu reaksi (0–60) menit terhadap persentase penyisihan PO43- menjadi parameter yang dianalisis pada proses kristalisasi struvite. Zeo-Mg dan struvite yang dihasilkan dianalisis menggunakan scanning electron microscopy dan energy dispersive X-ray spectroscopy. Penelitian menggunakan ACCC menghasilkan persentase penyisihan PO43- dengan adsorben Zeo-Mg sebesar 65% dalam 16 menit dan mengikuti persamaan kinetika reaksi orde satu, dengan konstanta laju reaksi 0,21 min-1. Penyisihan PO43- mencapai kesetimbangan pada pH 8,10 setelah 28 menit. Proses pemisahan PO43- dengan adsorben Zeo-Mg menjadi struvite secara berkesinambungan pada sistem ACCC merupakan proses baru pengolahan air limbah. Selain itu, proses pemanfaatan kembali PO43- ini dapat diterapkan ke dalam skala industri karena kemudahan dalam pengoperasiannya.


Sign in / Sign up

Export Citation Format

Share Document