Drosophila cell fusion induced by wheat germ agglutinin

1975 ◽  
Vol 18 (1) ◽  
pp. 113-121
Author(s):  
R.M. Rizki ◽  
T.M. Rizki ◽  
C.A. Andrews

The effects of wheat germ agglutinin on Drosophila embryonic cell lines growing on cover-glasses was examined by scanning electron microscopy. At low concentrations of the lectin (5-10 mug/ml), cells spread against the glass surface and fused to form syncytia. At high concentration, damage to the cell surface was evidenced as extensive membrane shrivelling and loss of surface microfilaments. Fusion also occurred under these conditions. There was some indication that the morphology of cells in division remains undisturbed by wheat germ agglutinin. The coalescence of cells and morphologic disotrtion induced by wheat germ agglutinin were not inhibited by N-acetylglucosamine, the hapten inhibitor of the lectin, under the conditions utilized in this study.

1976 ◽  
Vol 71 (1) ◽  
pp. 314-322 ◽  
Author(s):  
R Molday ◽  
R Jaffe ◽  
D McMahon

The cellular slime mold, Dictyostelium discoideum, is a convenient model for studying cellular interactions during development. Evidence that specific cell surface components are involved in cellular interactions during its development has been obtained by Gerisch and co-workers (1, 2) using immunological techniques. Smart and Hynes (3) have shown that a cell surface protein can be iodinated on cells in aggregation phase, but not in vegetative phase, by the lactoperoxidase procedure. Recently, McMahon et al. (4), and Hoffman and McMahon have demonstrated, by SDS gel electrophoresis, considerable differences in cell surface proteins and glycoproteins of plasma membranes isolated from cells at different stages of development. Plant lectins have also been used to monitor changes in cell surface properties of D. discoideum cells during development. Weeks and co-workers (5, 6) have detected differences in the binding and agglutination of cells by concanavalin A (Con A). Gillette and Filosa (7) have shown that Con A inhibits cell aggregation and prematurely induces cyclic AMP phosphodiesterase. Capping of Con A receptors has also been reported (8). Reitherman et al. (9) have recently reported that agglutination of cells by several plant lectins and the slime mold agglutination, discoidin, changes during development. Such studies indicate that differences in surface properties exist for cells at various stages of development. However, owing to the uncertainties in the factors which contribute to lectin-induced cell agglutination (10), the molecular basis for these observations remain to be determined. In this study, we have used microspheres (11-14) coupled to either Con A or wheat germ agglutinin (WGA) as visual markers to study by scanning electron microscopy the topographical distribution of lectin receptors on D. discoideum cells fixed at different stages of development. We also describe the effect of labeling on the distribution of lectin receptors and on the morphology of the cell surface.


2006 ◽  
Vol 274 (1606) ◽  
pp. 97-102 ◽  
Author(s):  
M.A Giraldo ◽  
D.G Stavenga

The beads in the wing scales of pierid butterflies play a crucially important role in wing coloration as shown by spectrophotometry and scanning electron microscopy (SEM). The beads contain pterin pigments, which in Pieris rapae absorb predominantly in the ultraviolet (UV). SEM demonstrates that in the European subspecies Pieris rapae rapae , both males and females have dorsal wing scales with a high concentration of beads. In the Japanese subspecies Pieris rapae crucivora , however, only the males have dorsal wing scales studded with beads, and the dorsal scales of females lack beads. Microspectrophotometry of single scales without beads yields reflectance spectra that increase slightly and monotonically with wavelength. With beads, the reflectance is strongly reduced in the UV and enhanced at the longer wavelengths. By stacking several layers of beaded scales, pierid butterflies achieve strong colour contrasts, which are not realized in the dorsal wings of female P. r. crucivora . Consequently, P. r. crucivora exhibits a strong sexual dichroism that is absent in P. r. rapae .


Author(s):  
Gabriel N. Chukwueze ◽  
Christian O. Asadu ◽  
Chijioke E. Onu ◽  
Innocent S. Ike

The inhibitive ability of pawpaw, neem and curry leaf extracts on corrosion of mild steel in sulfuric acid solution were investigated in this work. The extracts obtained from their respective leaves, were characterized to determine their phytochemical constituents as well as functional groups present using Fourier Transform Infrared Spectroscopy (FTIR) technique. Weight loss techniques was employed to evaluate the corrosion inhibition efficiency of the leaf extracts. The Scanning Electron Microscopy (SEM) was used to study the morphology of the mild steel before and after corrosion experiments. The process factors studied was exposure time, concentration of leaf extracts (inhibitor) and temperature. The results revealed that the phytochemical constituents of the leaves are capable of inhibiting corrosion due to high concentration of tannins which is responsible for the corrosion inhibition of mild steel. The rate of corrosion decreased with increase in the concentration of the extracts while the inhibition efficiency increased with increase in the concentration of the extracts. Scanning Electron Microscopy (SEM) revealed that the corroded mild steel in the presence of the extracts had smoother surfaces than corroded mild steel in the absence of the extracts. Also, neem leaf extract demonstrated higher potential as corrosion inhibitor than pawpaw and curry leaf extracts.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Eko Ariyanto ◽  
Yuyun Niyati ◽  
Dian Kharismadewi ◽  
Robiah Robiah

Wastewater from the fertilizer industry contains a high concentration of PO43- and NH4+. Those ions formed deposits that frequently clogged the conduits and reduced the pump efficiency of the wastewater treatment plant. A high concentration of PO43- and NH4+ in this wastewater can be used as a secondary source of PO43- fertilizer through the recovery process into struvite compounds (MgNH4PO4.6H2O). In this research, Struvite was crystallized in Aeration Cone Column Crystallizer (ACCC) with Magnesium modified natural Zeolite (Zeo-Mg) as adsorbent. Research also has been done using the Batch process, and the results were used as basis variables in the ACCC system. Effects of Zeolite activation, amounts of Zeo-Mg (10 – 30 g), PO43- and NH4+reactant ratio (1:1 – 1:3), pH (6 – 9), and reaction time (0 – 60 minutes) to the removal percentage of PO43- were used as research parameters that analyzed in struvite crystallization process. Zeo-Mg and struvite produced were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Research results in the ACCC system with Zeo-Mg as adsorbent showed that the percentage of PO43- removal was 65% in 16 minutes and followed pseudo-first-order reaction kinetics with a reaction rate constant of 0.21 min-1. The PO43- removal reached equilibrium at pH 8.10 after 28 minutes. Simultaneous removal of PO43- to formed struvite crystals using Zeo-Mg as an adsorbent and without the addition of Mg ions solution in the ACCC system is a novel process in wastewater treatment. Moreover, this PO43- recovery process can be implemented in the industrial scale due to the practical operation.A B S T R A KAir limbah industri pupuk banyak mengandung PO43- dan NH4+. Ion-ion ini membentuk endapan yang seringkali menyumbat aliran pipa yang menyebabkan penurunan efisiensi pompa di instalasi pengolahan air limbah. Kandungan PO43- dan NH4+ berkonsentrasi tinggi ini dapat dijadikan sumber sekunder untuk membuat pupuk PO43- dengan melakukan recovery sebagai senyawa struvite (MgNH4PO4.6H2O). Pada penelitian ini, struvite dibentuk menjadi kristal menggunakan Aeration Cone Column Crystallizer (ACCC) dengan adsorben zeolit alam yang telah dimodifikasi menggunakan ion magnesium (Zeo-Mg). Penelitian juga dilakukan dengan menggunakan proses batch, yang hasilnya dijadikan basis variabel pada sistem ACCC. Pengaruh pengaktifan zeolit, penambahan Zeo-Mg (10–30 g), rasio reaktan PO43- dan NH4+ (1:1–1:3), perubahan pH larutan (6–9), dan lamanya waktu reaksi (0–60) menit terhadap persentase penyisihan PO43- menjadi parameter yang dianalisis pada proses kristalisasi struvite. Zeo-Mg dan struvite yang dihasilkan dianalisis menggunakan scanning electron microscopy dan energy dispersive X-ray spectroscopy. Penelitian menggunakan ACCC menghasilkan persentase penyisihan PO43- dengan adsorben Zeo-Mg sebesar 65% dalam 16 menit dan mengikuti persamaan kinetika reaksi orde satu, dengan konstanta laju reaksi 0,21 min-1. Penyisihan PO43- mencapai kesetimbangan pada pH 8,10 setelah 28 menit. Proses pemisahan PO43- dengan adsorben Zeo-Mg menjadi struvite secara berkesinambungan pada sistem ACCC merupakan proses baru pengolahan air limbah. Selain itu, proses pemanfaatan kembali PO43- ini dapat diterapkan ke dalam skala industri karena kemudahan dalam pengoperasiannya.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582095134
Author(s):  
Pamela Nair Silva-Holguín ◽  
Simón Yobanny Reyes-López

Innovative and improved antimicrobial agents by nanotechnology are developed to control and mitigation of resistant microorganisms. Nanoparticles of metals or oxide metals be able to be toxic to bacteria, demonstrating biocidal behaviors at low concentrations. The integration of silver nanoparticles in ceramic matrices has enhanced the antimicrobial performance, resulting in the search for new composites with improved bactericidal properties. The aim of this study was to prepare and characterize hydroxyapatite-silver nanocomposite and evaluate its antimicrobial properties against various Gram-positive and negative bacteria related to drug-resistance infections. Hydroxyapatite nanopowders were produced by sol-gel and silver nanoparticles were synthesized by reduction of Ag+ions with the simple addition of gallic acid. Hydroxyapatite-silver composite (HAp-AgNPs) was prepared by adsorption of AgNPs at several concentrations. The results of UV–visible spectroscopy, dynamic light scattering, and transmission scanning electron microscopy revealed the existence of AgNPs with diameters around 6 nm. Scanning electron microscopy and energy dispersive X-ray spectroscopy corroborated the presence of silver disseminated over the surface of hydroxyapatite nanopowders. All HAp-AgNPs composites demonstrated excellent antibacterial effect even at lower silver concentration. HAp-AgNPs composites have a higher possibility for medical applications focused no the control of microorganisms with drug-resistance.


2016 ◽  
Vol 682 ◽  
pp. 265-269
Author(s):  
Małgorzata Perek-Nowak ◽  
Joanna Karwan-Baczewska

Samples made of iron powder with addition of 1.5 and 2% of molybdenum and 0-0.6% of boron were compacted at 600 MPa and sintered at 1200°C for 60 minutes in hydrogen atmosphere after mixing in Turbula mixer. The samples were deformed in a tensile test till rupture. The effect of molybdenum and boron on topography of fracture is discussed. It is noted that the sintering mechanism changes upon addition of boron particles into Fe-Mo alloy. The fractures of the studied samples were observed by means of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The addition of Mo influences the change of fracture to ductile type. The type of fracture is brittle with Mo and borides segregating to grain boundaries. In the alloys with low concentrations of molybdenum boron induces brittle transgranular fracture.


2007 ◽  
Vol 539-543 ◽  
pp. 2137-2142 ◽  
Author(s):  
Claire Daniel ◽  
Frédéric Christien ◽  
René Le Gall

It was previously reported that fatigue life of some alloys can be dramatically reduced if the grain boundaries contain a high level of impurity segregation before fatigue tests. In this paper the susceptibility of single phase brass samples (90Cu10Zn) to this form of damage is studied. After cold drawing of as cast brass bars, fatigue samples were heat treated at 800°C during 30min to promote recrystallization and impurity segregation at grain boundary. The samples were then tested under high frequency bending fatigue test at 200°C. After cracking, fracture surfaces were studied using both scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The SEM micrographs showed that the fractures were mostly intergranular. Chemical composition of intergranular cracks surface were analyzed using EPMA at low accelerating voltage. A high concentration of sulfur was found on most of grain boundary facets. The internal stress in alloys after fatigue was qualitatively estimated using electron backscattering diffraction in scanning electron microscopy. A high level of local misorientation was found near most grain boundaries. The mechanism of intergranular cracks formation during fatigue is discussed taking into account both the segregation of sulfur at grain boundaries and accumulation of plastic strain at grain boundaries


Sign in / Sign up

Export Citation Format

Share Document