scholarly journals Comparison of Suction/Injection Effect on Flow, Heat and Mass Transfer in Porous Media Using a Combined Similarity-Numerical Solution

Author(s):  
Falana Ayodeji ◽  
Babatope O. Pele ◽  
Abubakar A. Alao

This investigation deals with a comparison of suction/injection effect on flow, heat and mass transfer in porous media using a combined similarity-numerical solution. With this method of transformation, the governing transport PDEs are transformed into ODE and then solved numerically. The study reveals that suction/injection effect is more pronounce on the velocity distribution of a creeping flow (Darcy flow). The Darcy-Forchheimer flow has the steepest velocity curves due to non-linearity and has higher skin friction, heat and mass transfer rate when compared to the other porous media investigated.

2019 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Chakravarthula Raju ◽  
Naramgari Sandeep ◽  
Mohamed Ali ◽  
Abdullah Nuhait

A mathematical model has been proposed for investigating the flow, heat, and mass transfer in Williamson and Casson fluid-flow over a stretching surface. For controlling the temperature and concentration fields we considered the space and temperature dependent heat source/sink and homogeneous-heterogeneous reactions, respectively. Numerical results are carried out for this study by using Runge-Kutta based shooting technique. The effects of governing parameters on the flow, heat and mass transfer are illustrated graphically. Also computed the skin-friction coefficients for axial and transverse directions along with the local Nusselt number. In most of the studies, homogeneous-heterogeneous profiles were reduced into a single concentration equation by assuming equal diffusion coefficients. For the physical relevance, without any assumptions we studied the individual behavior of the homogeneous-heterogeneous profiles. It is found that the rate of heat and mass transfer in Casson fluid is significantly large while equated with the heat and mass transfer rate of Williamson fluid.


Author(s):  
Chakravarthula S.K. Raju ◽  
Naramgari Sandeep

A mathematical model has been proposed for analyzing the momentum, heat and mass transfer in Bio-convection flow towards a rotating cone/plate in a rotating fluid with nonlinear thermal radiation and chemical reaction. In this study we considered gyrotactic microorganism’s contained Williamson fluid. Numerical results are carried out by using Runge-Kutta based shooting technique. The effects of dimensionless governing parameters on the flow, heat and mass transfer are illustrated graphically. It is also computed the friction factors for the tangential and azimuthal directions, local Nusselt and Sherwood numbers along with the local density of the motile organisms. It has been observed a good agreement of the present results with the existed literature. The obtained results indicate that the heat and mass transfer rate is significantly increases for higher values of buoyancy parameter and Biot number. It is also found that the heat and mass transfer performance in Bio-convection flow is significantly high on the flow over a rotating plate while compared with the rotating cone.


Author(s):  
A. Falana ◽  
A. Alao Ahmed

In this work, a similarity solution of the flow, heat and mass transfer of a nanofluid over a porous plate in a Darcy-Forchheimer flow is explored. The nanofluid model includes Brownian motion and Thermophoresis diffusion effects. The governing transport equations are made dimensionless using similarity transformation technique which reduce them into ordinary differential equations with the associated boundary conditions. The equations are then solved numerically using the classical fourth order Runge-Kutta method and the results are benched marked with available results in literature and are found to be in good agreement. The results for the flow velocity, the shear stress, the temperature distribution, the nanoparticle volume concentration, the skin friction coefficient, the reduced Nusselt number, and the reduced Sherwood number, are presented graphically illustrating the effects of permeability, inertia, thermophoresis, Brownian motion, Lewis number and Prandtl number on the flow. Our analysis shows, among others, that the Nusselt number is a decreasing function, while the Sherwood number is an increasing function of the thermophoretic number


2018 ◽  
Vol 28 ◽  
pp. 33-46 ◽  
Author(s):  
K. Avinash ◽  
R. Hemadri Reddy ◽  
Anselm Onyekachukwu Oyem

A study on the thermophoresis and Brownian moment effects on magnetohydrodynamic flow of dissipative Casson fluid over a stretching sheet is considered. The governing equations of the flow, heat and mass transfer is transformed to ordinary differential equations by using similarity transformation. Numerical solutions of these equations are obtained by using shooting technique. The influence of pertinent parameters on the velocity, temperature and concentration profiles along with friction factor, local Nusselt and Sherwood numbers are discussed and presented through graphs and tables. It is found that the heat and mass transfer rate is high in steady flow when compared to unsteady flow.


Sign in / Sign up

Export Citation Format

Share Document